scholarly journals Cup products and group extensions

Author(s):  
P. A. Linnell

AbstractLet G be a finitely generated group and let R be a commutative ring, regarded as a G-module with G acting trivially. We shall determine when the cup product of two elements of H1(G, R) is zero. Our method will use the interpretation of H2(G, R) as extensions of G by R. This will give an alternative demonstration of results of Hillman and Würfel.

Author(s):  
Stefan Friedl ◽  
Stefano Vidussi

Abstract Let G be a finitely generated group that can be written as an extension $$ \begin{align*} 1 \longrightarrow K \stackrel{i}{\longrightarrow} G \stackrel{f}{\longrightarrow} \Gamma \longrightarrow 1 \end{align*} $$ where K is a finitely generated group. By a study of the Bieri–Neumann–Strebel (BNS) invariants we prove that if $b_1(G)> b_1(\Gamma ) > 0$ , then G algebraically fibres; that is, admits an epimorphism to $\Bbb {Z}$ with finitely generated kernel. An interesting case of this occurrence is when G is the fundamental group of a surface bundle over a surface $F \hookrightarrow X \rightarrow B$ with Albanese dimension $a(X) = 2$ . As an application, we show that if X has virtual Albanese dimension $va(X) = 2$ and base and fibre have genus greater that $1$ , G is noncoherent. This answers for a broad class of bundles a question of J. Hillman ([9, Question 11(4)]). Finally, we show that there exist surface bundles over a surface whose BNS invariants have a structure that differs from that of Kodaira fibrations, determined by T. Delzant.


2018 ◽  
Vol 2019 (20) ◽  
pp. 6480-6498 ◽  
Author(s):  
Goulnara Arzhantseva ◽  
Romain Tessera

AbstractWe construct a finitely generated group which is an extension of two finitely generated groups coarsely embeddable into Hilbert space but which itself does not coarsely embed into Hilbert space. Our construction also provides a new infinite monster group: the first example of a finitely generated group that does not coarsely embed into Hilbert space and yet does not contain a weakly embedded expander.


1993 ◽  
Vol 78 (1) ◽  
pp. 201-221 ◽  
Author(s):  
Robert Gilmer ◽  
William Heinzer

2017 ◽  
Vol 20 (2) ◽  
Author(s):  
Jack O. Button

AbstractWe show, using acylindrical hyperbolicity, that a finitely generated group splitting over


2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


2017 ◽  
Vol 37 (1) ◽  
pp. 153-168
Author(s):  
Hosein Fazaeli Moghimi ◽  
Batool Zarei Jalal Abadi

‎Let $R$ be a commutative ring with identity‎, ‎and $n\geq 1$ an integer‎. ‎A proper submodule $N$ of an $R$-module $M$ is called‎ ‎an $n$-prime submodule if whenever $a_1 \cdots a_{n+1}m\in N$ for some non-units $a_1‎, ‎\ldots‎ , ‎a_{n+1}\in R$ and $m\in M$‎, ‎then $m\in N$ or there are $n$ of the $a_i$'s whose product is in $(N:M)$‎. ‎In this paper‎, ‎we study $n$-prime submodules as a generalization of prime submodules‎. ‎Among other results‎, ‎it is shown that if $M$ is a finitely generated faithful multiplication module over a Dedekind domain $R$‎, ‎then every $n$-prime submodule of $M$ has the form $m_1\cdots m_t M$ for some maximal ideals $m_1,\ldots,m_t$ of $R$ with $1\leq t\leq n$‎.


1971 ◽  
Vol 5 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Gilbert Baumslag

We exhibit a 3-generator metabelian group which is not finitely related but has a trivial multiplicator.1. The purpose of this note is to establish the exitense of a finitely generated group which is not finitely related, but whose multiplecator is finitely generated. This settles negatively a question whichb has been open for a few years (it was first brought to my attention by Michel Kervaire and Joan Landman Dyer in 1964, but I believe it is somewhat older). The group is given in the follwing theorem.


Author(s):  
Jérémie Brieussel ◽  
Thibault Godin ◽  
Bijan Mohammadi

The growth of a finitely generated group is an important geometric invariant which has been studied for decades. It can be either polynomial, for a well-understood class of groups, or exponential, for most groups studied by geometers, or intermediate, that is between polynomial and exponential. Despite recent spectacular progresses, the class of groups with intermediate growth remains largely mysterious. Many examples of such groups are constructed using Mealy automata. The aim of this paper is to give an algorithmic procedure to study the growth of such automaton groups, and more precisely to provide numerical upper bounds on their exponents. Our functions retrieve known optimal bounds on the famous first Grigorchuk group. They also improve known upper bounds on other automaton groups and permitted us to discover several new examples of automaton groups of intermediate growth. All the algorithms described are implemented in GAP, a language dedicated to computational group theory.


1979 ◽  
Vol 28 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Nicholas S. Ford

AbstractLet R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.


Sign in / Sign up

Export Citation Format

Share Document