scholarly journals Character degrees and nilpotence class in p-groups

Author(s):  
Michael C. Slattery

AbstractWork of Isaacs and Passman shows that for some sets X of integers, p-groups whose set of irreducible character degrees is precisely X have bounded nilpotence class, while for other choices of X, the nilpotence class is unbounded. This paper presents a theoren which shows some additional sets of character degrees which bound nilpotence class within the family of metabelian p-groups. In particular, it is shown that is the non-linear irreducible character degrees of G lie between pa and pb, where a ≤ b ≤ 2a − 2, then the nilpotence class of G is bounded by a function of p and b − a.

2020 ◽  
Vol 23 (6) ◽  
pp. 1111-1122
Author(s):  
Sarah Croome ◽  
Mark L. Lewis

AbstractLet G be a p-group, and let χ be an irreducible character of G. The codegree of χ is given by {\lvert G:\operatorname{ker}(\chi)\rvert/\chi(1)}. Du and Lewis have shown that a p-group with exactly three codegrees has nilpotence class at most 2. Here we investigate p-groups with exactly four codegrees. If, in addition to having exactly four codegrees, G has two irreducible character degrees, G has largest irreducible character degree {p^{2}}, {\lvert G:G^{\prime}\rvert=p^{2}}, or G has coclass at most 3, then G has nilpotence class at most 4. In the case of coclass at most 3, the order of G is bounded by {p^{7}}. With an additional hypothesis, we can extend this result to p-groups with four codegrees and coclass at most 6. In this case, the order of G is bounded by {p^{10}}.


2019 ◽  
Vol 63 (2) ◽  
pp. 328-334
Author(s):  
Sarah Croome ◽  
Mark L. Lewis

AbstractLet $G$ be a $p$-group and let $\unicode[STIX]{x1D712}$ be an irreducible character of $G$. The codegree of $\unicode[STIX]{x1D712}$ is given by $|G:\,\text{ker}(\unicode[STIX]{x1D712})|/\unicode[STIX]{x1D712}(1)$. If $G$ is a maximal class $p$-group that is normally monomial or has at most three character degrees, then the codegrees of $G$ are consecutive powers of $p$. If $|G|=p^{n}$ and $G$ has consecutive $p$-power codegrees up to $p^{n-1}$, then the nilpotence class of $G$ is at most 2 or $G$ has maximal class.


2020 ◽  
Vol 18 (1) ◽  
pp. 907-915
Author(s):  
Zhongbi Wang ◽  
Chao Qin ◽  
Heng Lv ◽  
Yanxiong Yan ◽  
Guiyun Chen

Abstract For a positive integer n and a prime p, let {n}_{p} denote the p-part of n. Let G be a group, \text{cd}(G) the set of all irreducible character degrees of G , \rho (G) the set of all prime divisors of integers in \text{cd}(G) , V(G)=\left\{{p}^{{e}_{p}(G)}|p\in \rho (G)\right\} , where {p}^{{e}_{p}(G)}=\hspace{.25em}\max \hspace{.25em}\{\chi {(1)}_{p}|\chi \in \text{Irr}(G)\}. In this article, it is proved that G\cong {L}_{2}({p}^{2}) if and only if |G|=|{L}_{2}({p}^{2})| and V(G)=V({L}_{2}({p}^{2})) .


2019 ◽  
Vol 19 (02) ◽  
pp. 2050036
Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi

In this paper, we prove that the direct product [Formula: see text], where [Formula: see text] are distinct numbers, is uniquely determined by its complex group algebra. Particularly, we show that the direct product [Formula: see text], where [Formula: see text]’s are distinct odd prime numbers, is uniquely determined by its order and three irreducible character degrees.


10.37236/1862 ◽  
2004 ◽  
Vol 11 (2) ◽  
Author(s):  
Christine Bessenrodt ◽  
Jørn B. Olsson

We classify partitions which are of maximal $p$-weight for all odd primes $p$. As a consequence, we show that any non-linear irreducible character of the symmetric and alternating groups vanishes on some element of prime order.


1989 ◽  
Vol 41 (1) ◽  
pp. 68-82 ◽  
Author(s):  
I. M. Isaacs

The main result of this paper is the following:Theorem A. Let H and N be finite groups with coprime orders andsuppose that H acts nontrivially on N via automorphisms. Assume that Hfixes every nonlinear irreducible character of N. Then the derived subgroup ofN is nilpotent and so N is solvable of nilpotent length≦ 2.Why might one be interested in a situation like this? There has been considerable interest in the question of what one can deduce about a group Gfrom a knowledge of the setcd(G) = ﹛x(l)lx ∈ Irr(G) ﹜of irreducible character degrees of G.Recently, attention has been focused on the prime divisors of the elements of cd(G). For instance, in [9], O. Manz and R. Staszewski consider π-separable groups (for some set π of primes) with the property that every element of cd(G) is either a 77-number or a π'-number.


2006 ◽  
Vol 49 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Jeffrey M. Riedl

AbstractWe extend a result of Noritzsch, which describes the orbit sizes in the action of a Frobenius group G on a finite vector space V under certain conditions, to a more general class of finite solvable groups G. This result has applications in computing irreducible character degrees of finite groups. Another application, proved here, is a result concerning the structure of certain groups with few complex irreducible character degrees.


2020 ◽  
Vol 115 (6) ◽  
pp. 599-609
Author(s):  
Rachel D. Camina ◽  
Ainhoa Iñiguez ◽  
Anitha Thillaisundaram

AbstractLet w be a word in k variables. For a finite nilpotent group G, a conjecture of Amit states that $$N_w(1)\ge |G|^{k-1}$$ N w ( 1 ) ≥ | G | k - 1 , where for $$g\in G$$ g ∈ G , the quantity $$N_w(g)$$ N w ( g ) is the number of k-tuples $$(g_1,\ldots ,g_k)\in G^{(k)}$$ ( g 1 , … , g k ) ∈ G ( k ) such that $$w(g_1,\ldots ,g_k)={g}$$ w ( g 1 , … , g k ) = g . Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit’s conjecture, which states that $$N_w(g)\ge |G|^{k-1}$$ N w ( g ) ≥ | G | k - 1 for g a w-value in G, and prove that $$N_w(g)\ge |G|^{k-2}$$ N w ( g ) ≥ | G | k - 2 for finite groups G of odd order and nilpotency class 2. If w is a word in two variables, we further show that the generalized Amit conjecture holds for finite groups G of nilpotency class 2. In addition, we use character theory techniques to confirm the generalized Amit conjecture for finite p-groups (p a prime) with two distinct irreducible character degrees and a particular family of words. Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational.


2001 ◽  
Vol 246 (2) ◽  
pp. 708-720 ◽  
Author(s):  
Mark L. Lewis ◽  
Jeffrey M. Riedl

Sign in / Sign up

Export Citation Format

Share Document