scholarly journals Multipliers from spaces of test functions to amalgams

Author(s):  
Maria Torres De Squire

AbstractIn this paper we study the space of multipliers M(r, s: p, q) from the space of test functions Φrs(G), on a locally compact abelian group G, to amalgams (Lp, lq)(G); the former includes (when r = s = ∞) the space of continuous functions with compact support and the latter are extensions of the Lp(G) spaces. We prove that the space M(∞: p) is equal to the derived space (Lp)0 defined by Figá-Talamanca and give a characterization of the Fourier transform for amalgams in terms of these spaces of multipliers.

1973 ◽  
Vol 9 (1) ◽  
pp. 73-82 ◽  
Author(s):  
U.B. Tewari ◽  
A.K. Gupta

Let G be a locally compact abelian group and Ĝ be its dual group. For 1 ≤ p < ∞, let Ap (G) denote the set of all those functions in L1(G) whose Fourier transforms belong to Lp (Ĝ). Let M(Ap (G)) denote the set of all functions φ belonging to L∞(Ĝ) such that is Fourier transform of an L1-function on G whenever f belongs to Ap (G). For 1 ≤ p < q < ∞, we prove that Ap (G) Aq(G) provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and 1 ≤ p ≤ 4 then lp (Ĝ) M(Ap(G)), and if p > 4 then there exists ψ є lp (Ĝ) such that ψ does not belong to M(Ap (G)).


1968 ◽  
Vol 64 (2) ◽  
pp. 323-333 ◽  
Author(s):  
Donald E. Ramirez

Let G be a locally compact Abelian group; Γ the dual group of G; CB(Γ) the algebra of continuous, bounded functions on Γ C0(Γ) the algebra of continuous functions on Γ which vanish at infinity; M(G) the algebra of bounded Borel measures on G; M(G)^ the algebra of Fourier–Stieltjes transforms; and M(G)^− the completion of M(G)^ in the sup-norm topology on Γ. The object of this paper is to study the natural pairing between M(G)^ and M(Γ).


1964 ◽  
Vol 4 (4) ◽  
pp. 403-409 ◽  
Author(s):  
R. E. Edwards

D. A. Edwards has shown [1] that if X is a locally compact Abelian group and f ∈ L∞, then the translate fa of f varies continuously with α if and only if f is (equal l.a.e. to) a bounded, uniformly continuous function. He remarks that this is a sort of dual to part of a result due to Plessner and Raikov which asserts that an element μ of the space Mb of bounded Radon measures on X belongs to L1 (i.e., is absolutely continuous relative to Haar measure) if and only its translates vary continuously with the group element, the relevant topology on Mb being that defined by the natural norm of Mb as the dual of the space of continuous functions vanishing at infinity. The proof he uses (ascribed to Reiter) applies equally well in both cases, and also to the case in which X is non-Abelian. A brief examination shows that in the latter case it is ultimately immaterial whether left- or right-translates are considered; since the extra complexities of this case are principally terminological, we shall direct no further attention to it.


Sign in / Sign up

Export Citation Format

Share Document