Translates of L∞ functions and of bounded measures

1964 ◽  
Vol 4 (4) ◽  
pp. 403-409 ◽  
Author(s):  
R. E. Edwards

D. A. Edwards has shown [1] that if X is a locally compact Abelian group and f ∈ L∞, then the translate fa of f varies continuously with α if and only if f is (equal l.a.e. to) a bounded, uniformly continuous function. He remarks that this is a sort of dual to part of a result due to Plessner and Raikov which asserts that an element μ of the space Mb of bounded Radon measures on X belongs to L1 (i.e., is absolutely continuous relative to Haar measure) if and only its translates vary continuously with the group element, the relevant topology on Mb being that defined by the natural norm of Mb as the dual of the space of continuous functions vanishing at infinity. The proof he uses (ascribed to Reiter) applies equally well in both cases, and also to the case in which X is non-Abelian. A brief examination shows that in the latter case it is ultimately immaterial whether left- or right-translates are considered; since the extra complexities of this case are principally terminological, we shall direct no further attention to it.

Author(s):  
Maria Torres De Squire

AbstractIn this paper we study the space of multipliers M(r, s: p, q) from the space of test functions Φrs(G), on a locally compact abelian group G, to amalgams (Lp, lq)(G); the former includes (when r = s = ∞) the space of continuous functions with compact support and the latter are extensions of the Lp(G) spaces. We prove that the space M(∞: p) is equal to the derived space (Lp)0 defined by Figá-Talamanca and give a characterization of the Fourier transform for amalgams in terms of these spaces of multipliers.


1973 ◽  
Vol 18 (4) ◽  
pp. 307-316 ◽  
Author(s):  
Gavin Brown ◽  
William Moran

G denotes a locally compact abelian group and M(G) the convolution algebra of regular bounded Borel measures on G. An ideal I of M(G) closed in the usual (total variation) norm topology is called an L-ideal if μ ∈ I, ν≪ μ (ν absolutely continuous with respect to μ) implies that ν ∈ I. Here we are concerned with the L-idealsL1(G), , and M0(G) where, as usual, L1(G) denotes the set of measures absolutely continuous with respect to Haar measure, denotes the radical of L1(G) in M(G) and M0(G) denotes the set of measures whose Fourier-Stieltjes transforms vanish at infinity.


1975 ◽  
Vol 18 (1) ◽  
pp. 143-145 ◽  
Author(s):  
L. T. Gardner ◽  
P. Milnes

AbstractA theorem of M. Katětov asserts that a bounded uniformly continuous function f on a subspace Q of a uniform space P has a bounded uniformly continuous extension to all of P. In this note we give new proofs of two special cases of this theorem: (i) Q is totally bounded, and (ii) P is a locally compact group and Q is a subgroup, both P and Q having the left uniformity.


1968 ◽  
Vol 64 (4) ◽  
pp. 1015-1022 ◽  
Author(s):  
Karl Stromberg

In 1966, Hewitt and Zuckerman(3,4) proved that if G is a non-discrete locally compact Abelian group with Haar measure λ, then there exists a non-negative, continuous regular measure μon G that is singular to λ(μ ┴ λ) such that μ(G)= 1, μ * μ is absolutely continuous with respect to λ(μ * μ ≪ λ), and the Lebesgue-Radon-Nikodym derivative of μ * μ with respect to λ is in (G, λ) for all real p > 1. They showed also that such a μ can be chosen so that the support of μ * μ contains any preassigned σ-compact subset of G. It is the purpose of the present paper to extend this result to obtain large independent sets of such measures. Among other things the present results show that, for such groups, the radical of the measure algebra modulo the -algebra has large dimension. This answers a question (6.4) left open in (3).


1990 ◽  
Vol 108 (3) ◽  
pp. 527-538 ◽  
Author(s):  
M. Filali

In recent years, the Stone-Čech compactification of certain semigroups (e.g. discrete semigroups) has been an interesting semigroup compactification (i.e. a compact right semitopological semigroup which contains a dense continuous homomorphic image of the given semigroup) to study, because an Arens-type product can be introduced. If G is a non-compact and non-discrete locally compact abelian group, then it is not possible to introduce such a product into the Stone-Čech compactification βG of G (see [1]). However, let UC(G) be the Banach algebra of bounded uniformly continuous complex functions on G, and let UG be the spectrum of UC(G) with the Gelfand topology. If f∈ UC(G), then the functions f and fy defined on G byare also in UC(G).


1995 ◽  
Vol 51 (1) ◽  
pp. 33-42 ◽  
Author(s):  
B. Basit ◽  
A.J. Pryde

In this paper we define polynomials on a locally compact Abelian group G and prove the equivalence of our definition with that of Domar. We explore the properties of polynomials and determine their spectra. We also characterise the primary ideals of certain Beurling algebras on the group of integers Z. This allows us to classify those elements of that have finite spectrum. If ϕ is a uniformly continuous function with bounded differences then there is a Beurling algebra naturally associated with ϕ. We give a condition on the spectrum of ϕ relative to this algebra which ensures that ϕ is bounded. Finally we give spectral conditions on a bounded function on ℝ that ensure that its indefinite integral is bounded.


1968 ◽  
Vol 64 (2) ◽  
pp. 323-333 ◽  
Author(s):  
Donald E. Ramirez

Let G be a locally compact Abelian group; Γ the dual group of G; CB(Γ) the algebra of continuous, bounded functions on Γ C0(Γ) the algebra of continuous functions on Γ which vanish at infinity; M(G) the algebra of bounded Borel measures on G; M(G)^ the algebra of Fourier–Stieltjes transforms; and M(G)^− the completion of M(G)^ in the sup-norm topology on Γ. The object of this paper is to study the natural pairing between M(G)^ and M(Γ).


Sign in / Sign up

Export Citation Format

Share Document