scholarly journals Level crossings of a random trigonometric polynomial with dependent coefficients

Author(s):  
K. Farahmand

AbstractThis paper provides an asymptotic estimate for the expected number of K-level crossings of the random trigonometric polynomial g1 cos x + g2 cos 2x+ … + gn cos nx where gj (j = 1, 2, …, n) are dependent normally distributed random variables with mean zero and variance one. The two cases of ρjr, the correlation coeffiecient between the j-th and r-th coefficients, being either (i) constant, or (ii) ρ∣j−r∣ρ, j ≠ r, 0 < ρ < 1, are considered. It is shown that the previous result for ρjr = 0 still remains valid for both cases.

1999 ◽  
Vol 22 (3) ◽  
pp. 579-586
Author(s):  
K. Farahmand ◽  
P. Hannigan

In this paper, we show that the asymptotic estimate for the expected number ofK-level crossings of a random hyperbolic polynomiala1sinhx+a2sinh2x+⋯+ansinhnx, whereaj(j=1,2,…,n)are independent normally distributed random variables with mean zero and variance one, is(1/π)logn. This result is true for allKindependent ofx, providedK≡Kn=O(n). It is also shown that the asymptotic estimate of the expected number of turning points for the random polynomiala1coshx+a2cosh2x+⋯+ancoshnx, withaj(j=1,2,…,n)as before, is also(1/π)logn.


1997 ◽  
Vol 10 (1) ◽  
pp. 57-66 ◽  
Author(s):  
K. Farahmand

The asymptotic estimate of the expected number of real zeros of the polynomial T(θ)=g1cosθ+g2cos2θ+…+gncosnθ where gj(j=1,2,…,n) is a sequence of independent normally distributed random variables is known. The present paper provides an upper estimate for the variance of such a number. To achieve this result we first present a general formula for the covariance of the number of real zeros of any normal process, ξ(t), occurring in any two disjoint intervals. A formula for the variance of the number of real zeros of ξ(t) follows from this result.


1997 ◽  
Vol 10 (1) ◽  
pp. 67-70 ◽  
Author(s):  
J. Ernest Wilkins

If aj(j=1,2,…,n) are independent, normally distributed random variables with mean 0 and variance 1, if p is one half of any odd positive integer except one, and if vnp is the mean number of zeros on (0,2π) of the trigonometric polynomial a1cosx+2pa2cos2x+…+npancosnx, then vnp=μp{(2n+1)+D1p+(2n+1)−1D2p+(2n+1)−2D3p}+O{(2n+1)−3}, in which μp={(2p+1)/(2p+3)}½, and D1p, D2p and D3p are explicitly stated constants.


1995 ◽  
Vol 8 (3) ◽  
pp. 299-317
Author(s):  
J. Ernest Wilkins ◽  
Shantay A. Souter

If a1,a2,…,an are independent, normally distributed random variables with mean 0 and variance 1, and if vn is the mean number of zeros on the interval (0,2π) of the trigonometric polynomial a1cosx+2½a2cos2x+…+n½ancosnx, then vn=2−½{(2n+1)+D1+(2n+1)−1D2+(2n+1)−2D3}+O{(2n+1)−3}, in which D1=−0.378124, D2=−12, D3=0.5523. After tabulation of 5D values of vn when n=1(1)40, we find that the approximate formula for vn, obtained from the above result when the error term is neglected, produces 5D values that are in error by at most 10−5 when n≥8, and by only about 0.1% when n=2.


1998 ◽  
Vol 21 (2) ◽  
pp. 347-350
Author(s):  
K. Farahmand ◽  
M. Jahangiri

This paper provides the asymptotic estimate for the expected number of real zeros of a random hyperbolic polynomialg1coshx+2g2cosh2x+…+ngncoshnxwheregj,(j=1,2,…,n)are independent normally distributed random variables with mean zero and variance one. It is shown that for sufficiently largenthis asymptotic value is(1/π)logn.


1992 ◽  
Vol 5 (4) ◽  
pp. 307-313 ◽  
Author(s):  
K. Farahmand

We study the expected number of real roots of the random equation g1cosθ+g2cos2θ+…+gncosnθ=K where the coefficients gj's are normally distributed, but not necessarily all identical. It is shown that although this expected number is independent of the means of gj, (j=1,2,…,n), it will depend on their variances. The previous works in this direction considered the identical distribution for the coefficients.


1997 ◽  
Vol 10 (3) ◽  
pp. 257-264
Author(s):  
K. Farahmand

Let T0∗(x),T1∗(x),…,Tn∗(x) be a sequence of normalized Legendre polynomials orthogonal with respect to the interval (−1,1). The asymptotic estimate of the expected number of real zeros of the random polynomial g0T0∗(x)+g1T1∗(x)+…+gnTn∗(x) where gj, j=1,2,…,n are independent identically and normally distributed random variables with mean zero and variance one is known. The present paper considers the case when the means and variances of the coefficients are not all necessarily equal. It is shown that in general this expected number of real zeros is only dependent on variances and is independent of the means.


Author(s):  
Minaketan Das

AbstractLet a1, a2,… be a sequence of mutually independent, normally distributed, random variables with mathematical expectation zero and variance unity; let b1, b2,… be a set of positive constants. In this work, we obtain the average number of zeros in the interval (0, 2π) of trigonometric polynomials of the formfor large n. The case when bk = kσ (σ > − 3/2;) is studied in detail. Here the required average is (2σ + 1/2σ + 3)½.2n + o(n) for σ ≥ − ½ and of order n3/2; + σ in the remaining cases.


1988 ◽  
Vol 1 (4) ◽  
pp. 259-269 ◽  
Author(s):  
Kambiz Farahmand

We know the expected number of times that a polynomial of degree n with independent random real coefficients asymptotically crosses the level K, when K is any real value such that (K2/n)→0 as n→∞. The present paper shows that, when K is allowed to be large, this expected number of crossings reduces to only one. The coefficients of the polynomial are assumed to be normally distributed. It is shown that it is sufficient to let K≥exp(nf) where f is any function of n such that f→∞ as n→∞.


Author(s):  
K. Farahmand ◽  
M. Sambandham

For random coefficientsajandbjwe consider a random trigonometric polynomial defined asTn(θ)=∑j=0n{ajcos⁡jθ+bjsin⁡jθ}. The expected number of real zeros ofTn(θ)in the interval(0,2π)can be easily obtained. In this note we show that this number is in factn/3. However the variance of the above number is not known. This note presents a method which leads to the asymptotic value for the covariance of the number of real zeros of the above polynomial in intervals(0,π)and(π,2π). It can be seen that our method in fact remains valid to obtain the result for any two disjoint intervals. The applicability of our method to the classical random trigonometric polynomial, defined asPn(θ)=∑j=0naj(ω)cos⁡jθ, is also discussed.Tn(θ)has the advantage onPn(θ)of being stationary, with respect toθ, for which, therefore, a more advanced method developed could be used to yield the results.


Sign in / Sign up

Export Citation Format

Share Document