scholarly journals Automatic verification of timed concurrent constraint programs

2006 ◽  
Vol 6 (3) ◽  
pp. 265-300 ◽  
Author(s):  
MORENO FALASCHI ◽  
ALICIA VILLANUEVA

The language Timed Concurrent Constraint (tccp) is the extension over time of the Concurrent Constraint Programming (cc) paradigm that allows us to specify concurrent systems where timing is critical, for example reactive systems. Systems which may have an infinite number of states can be specified in tccp. Model checking is a technique which is able to verify finite-state systems with a huge number of states in an automatic way. In the last years several studies have investigated how to extend model checking techniques to systems with an infinite number of states. In this paper we propose an approach which exploits the computation model of tccp. Constraint based computations allow us to define a methodology for applying a model checking algorithm to (a class of) infinite-state systems. We extend the classical algorithm of model checking for LTL to a specific logic defined for the verification of tccp and to the tccp Structure which we define in this work for modeling the program behavior. We define a restriction on the time in order to get a finite model and then we develop some illustrative examples. To the best of our knowledge this is the first approach that defines a model checking methodology for tccp.

1993 ◽  
Vol 22 (445) ◽  
Author(s):  
Henrik Reif Andersen

This thesis is concerned with the verification of concurrent systems modelled by process algebras. It provides methods and techniques for reasoning about temporal properties as described by assertions from an expressive modal logic -- the modal µ-calculus. It describes a compositional approach to model checking, efficient local and global algorithms for model checking finite-state systems, a general local fixed-point finding algorithm, a proof system for model checking infinite-state systems, a categorical completeness result for an intuitionistic version of the modal µ-calculus, and finally it shows some novel applications of the logic for expressing behavioural relations.


2013 ◽  
Vol 24 (02) ◽  
pp. 211-232 ◽  
Author(s):  
ALESSANDRO CARIONI ◽  
SILVIO GHILARDI ◽  
SILVIO RANISE

We identify sufficient conditions to automatically establish the termination of a backward reachability procedure for infinite state systems by using well-quasi-orderings. Besides showing that backward reachability succeeds on many instances of problems covered by general termination results, we argue that it could predict termination also on interesting instances of the reachability problem that are outside the scope of applicability of such general results. We work in the declarative framework of Model Checking Modulo Theories that permits us to exploit recent advances in Satisfiability Modulo Theories solving and model-theoretic notions of first-order logic.


1993 ◽  
Vol 22 (446) ◽  
Author(s):  
Henrik Reif Andersen

This paper presents a proof method for proving that infinite-state systems satisfy properties expressed in the modal µ-calculus. The method is sound and complete relative to externally proving inclusions of sets of states. It can be seen as a recast of a tableau method due to Bradfield and Stirling following lines used by Winskel for finite-state systems. Contrary to the tableau method, it avoids the use of constants when unfolding fixed points and it replaces the rather involved global success criterion in the tableau method with local success criteria. A proof tree is now merely a means of keeping track of where possible choices are made -- and can be changed -- and not an essential ingredient in establishing the correctness of a proof: A proof will be correct when all leaves can be directly seen to be valid. Therefore, it seems well-suited for implementation as a tool, by, for instance, integration into existing general-purpose theorem provers.


Sign in / Sign up

Export Citation Format

Share Document