compositional model
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 76)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 183 (3-4) ◽  
pp. 203-242
Author(s):  
Dirk Fahland ◽  
Vadim Denisov ◽  
Wil. M.P. van der Aalst

To identify the causes of performance problems or to predict process behavior, it is essential to have correct and complete event data. This is particularly important for distributed systems with shared resources, e.g., one case can block another case competing for the same machine, leading to inter-case dependencies in performance. However, due to a variety of reasons, real-life systems often record only a subset of all events taking place. To understand and analyze the behavior and performance of processes with shared resources, we aim to reconstruct bounds for timestamps of events in a case that must have happened but were not recorded by inference over events in other cases in the system. We formulate and solve the problem by systematically introducing multi-entity concepts in event logs and process models. We introduce a partial-order based model of a multi-entity event log and a corresponding compositional model for multi-entity processes. We define PQR-systems as a special class of multi-entity processes with shared resources and queues. We then study the problem of inferring from an incomplete event log unobserved events and their timestamps that are globally consistent with a PQR-system. We solve the problem by reconstructing unobserved traces of resources and queues according to the PQR-model and derive bounds for their timestamps using a linear program. While the problem is illustrated for material handling systems like baggage handling systems in airports, the approach can be applied to other settings where recording is incomplete. The ideas have been implemented in ProM and were evaluated using both synthetic and real-life event logs.


2021 ◽  
Author(s):  
Mohd Ghazali Abd Karim ◽  
Wahyu Hidayat ◽  
Alzahrani Abdulelah

Abstract The objective of this paper is to investigate the effects of interfacial tension dependent relative permeability (Kr_IFT) on oil displacement and recovery under different gas injection compositions utilizing a compositional simulation model. Oil production under miscible gas injection will result in variations of interfacial tension (IFT) due to changes in oil and gas compositions and other reservoir properties, such as pressure and temperature. Laboratory experiments show that changes in IFT will affect the two-phase relative permeability curve (Kr), especially for oil-gas system. Using a single relative permeability curve during the process from immiscible to miscible conditions will result in inaccurate gas mobility against water, which may lead to poor estimation of sweep efficiency and oil recovery. A synthetic sector compositional model was built to evaluate the effects of this phenomenon. Several simulation cases were investigated over different gas injection compositions (lean, rich and CO2), fluid properties and reservoir characterizations to demonstrate the impact of these parameters. Simulation model results show that the application of Kr_IFT on gas injection simulation modelling has captured different displacement behavior to provide better estimation of oil recovery and identify any upside potential.


2021 ◽  
Author(s):  
Mohd Azran A. Jalil ◽  
Sharidah M. Amin ◽  
Siti Syareena M. Ali

Abstract This paper presented an integrated CO2 injection and sequestration modelling study performed on a depleted carbonate gas reservoir, which has been identified as one of potential CO2 sequestration site candidate in conjunction with nearby high CO2 gas fields development and commercialization effort to monetize the fields. 3D compositional modelling, geomechanical and geochemical assessment were conducted to strategize optimum subsurface CO2 injection and sequestration development concept for project execution. Available history matched black oil simulation model was converted into compositional model. Sensitivity analyses on optimum injection rate, number and types of injectors, solubility of CO2 in water, injection locations and impact of hysteresis to plume distribution were investigated. Different types of CO2 trapping mechanisms including hydrodynamic, residual/capillary, solubility and mineral trapping were studied in detailed. Coupled modelling study was performed on base case scenario to assess geomechnical and geochemical risks associated with CO2 injection and sequestration process before-, during- and post- CO2 injection operation to provide assurance for a safe and long-term CO2 sequestration in the field. Available history matched black oil model was successfully converted into compositional model, in which CO2 is treated and can be tracked as a separate component in the reservoir throughout the production and injection processes. Integrating all the results obtained from sensitivities analyses, the proposed optimum subsurface CO2 injection and sequestration development concept for the field is to inject up to 400 MMscf/D of CO2 rate via four injectors. CO2 injection rate is forecasted to sustain more than 3 years from injection start date before declining with time. In terms of CO2 storage capacity, constraining injection pressure up to initial reservoir pressure, maximum CO2 storage capacity is estimated ~65 Million tonnes. Nevertheless, considering maximum allowable CO2 injection pressure estimated from coupled modelling study and operational safety factor, the field is capable to accommodate a total of ~77 Million tonnes of CO2, whereby 73% of total CO2 injected will exists in mobile phase and trapped underneath caprock whilst the other 24% and 3% will be trapped as residual/capillary and dissolved in water respectively. Changes of minerals and porosity were observed from 3D geochemical modelling, however, changes are negligible due to the fact that geochemical reaction is a very slow process. This paper highlights and shares simulation results obtained from CO2 injection and sequestration studies performed on 3D compositional model to generate an optimum subsurface CO2 injection and sequestration development concept for project execution in future. Integration with geomechanical and geochemical modelling studies are crucial to assess site's capability to accommodate CO2 within the geological formation and provide assurance for a safe and long-term CO2 sequestration.


2021 ◽  
Author(s):  
Nils-Peter Finger ◽  
Mikhail K Kaban ◽  
Magdala Tesauro ◽  
Walter D. Mooney ◽  
Maik Thomas
Keyword(s):  

2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Ahmed Mahmoud El-Menoufi ◽  
Eman Abed Ezz El-Regal ◽  
Ahmed Mohamed Ali ◽  
Khaled Mohamed Mansour ◽  
...  

Abstract Field development planning of gas condensate fields using numerical simulation has many aspects to consider that may lead to a significant impact on production optimization. An important aspect is to account for the effects of network constraints and process plant operating conditions through an integrated asset model. This model should honor proper representation of the fluid within the reservoir, through the wells and up to the network and facility. Obaiyed is one of the biggest onshore gas field in Egypt, it is a highly heterogeneous gas condensate field located in the western desert of Egypt with more than 100 wells. Three initial condensate gas ratios are existing based on early PVT samples and production testing. The initial CGR values are as following;160, 115 and 42 STB/MMSCF. With continuous pressure depletion, the produced hydrocarbon composition stream changes, causing a deviation between the design parameters and the operating parameters of the equipment within the process plant, resulting in a decrease in the recovery of liquid condensate. Therefore, the facility engineers demand a dynamic update of a detailed composition stream to optimize the system and achieve greater economic value. The best way to obtain this compositional stream is by using a fully compositional integrated asset model. Utilizing a fully compositional model in Obaiyed is challenging, computationally expensive, and impractical, especially during the history match of the reservoir numerical model. In this paper, a case study for Obaiyed field is presented in which we used an alternative integrated asset modeling approach comprising a modified black-oil (MBO) that results in significant timesaving in the full-field reservoir simulation model. We then used a proper de-lumping scheme to convert the modified black oil tables into as many components as required by the surface network and process plant facility. The results of proposed approach are compared with a fully compositional approach for validity check. The results clearly identified the system bottlenecks. The model enables the facility engineers to keep the conditions of the surface facility within the optimized operating envelope throughout the field's lifetime and will be used to propose new locations and optimize the tie-in location of future wells in addition to providing flow assurance indications throughout the field's life and under different network configurations.


10.34690/208 ◽  
2021 ◽  
pp. 152-165
Author(s):  
Марианна Сергеевна Высоцкая

Понятие композиционной модели как структурносемантического прототипа музыкальной формы развивалось и эволюционировало вместе с понятием композиции как эстетической категории и одной из основополагающих категорий художественного творчества. В роли композиционной модели выступает художественный канон или авторский текст; она задается извне или выстраивается по индивидуально разработанному алгоритму; способом ее представления может быть вербализованная система правил, графическая схема или объективированный в звуковой форме образец. С возрастанием значимости в творческом процессе абстрактно-логического мышления область моделируемого внемузыкального неуклонно расширяется: от следования стратегическим законам ораторской речи - к расчетам на основе математических формул, от «биоморфизма» - к «техноморфизму». В статье рассмотрена эволюция понятия композиционной модели на материале сочинений, принадлежащих разным эпохам и стилям: Токкаты из органного триптиха И. С. Баха BWV 564, органной Сонаты № 6 d-moLL из цикла ор. 65 Ф. Мендельсона, Симфонии in C И. Стравинского, Concerto grosso памяти Веберна Ф. Караева и «VOI(REX)» Ф. Леру. The concept of a composite modeL as a structuraLLy semantic prototype of a musicaL form deveLoped and evoLved aLong with the concept of composition as an aesthetic category and one of the fundamentaL categories of artistic creation. The compositionaL modeL is an artistic canon or author's text, it is given from outside or is buiLt according to an individuaLLy deveLoped algorithm, the way in which it is presented can be a verbatim system of ruLes, a graphicaL diagram or an audibLe specimen. With increasing importance in the creative process of abstract and LogicaL thinking, the area of modeLLed extramusicaL is steadiLy expanding: from foLLowing the strategic Laws of oratory speech to caLcuLating on the basis of mathematicaL formuLae, from “bio-morphism” to “techno-morphism.” The articLe considers the evoLution of the concept of the composition modeL on the materiaL of works beLonging to different epochs and styLes: Toccata from the organ triptych I. S. Bach BWV 564, Sonata 6 d-moLL from op. 65 F. MendeLssohn, Symphony in C I. Stravinsky, Concerto grosso in the memory of Webern F. Karaev and “VOI(REX)” F. Leroux.


2021 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Hofmann M ◽  
Khalaf FH ◽  
Hiba H Alwan

The efficiency of gas injection for developing terrigenous deposits within a multilayer producing object is investigated in this article. According to the results of measurements of the 3D hydrodynamic compositional model, an assessment of the oil recovery factor was made. In the studied conditions, re-injection of the associated gas was found to be the most technologically efficient working agent. The factors contributing to the inefficacy of traditional methods of stimulating oil production such as multistage hydraulic fracturing when used to develop low-permeability reservoirs have been analysed. The factors contributing to the inefficiency of traditional oil-production stimulation methods, such as multistage hydraulic fracturing, have been analysed when they are applied to low-permeability reservoirs. The use of a gas of various compositions is found to be more effective as a working agent for reservoirs with permeability less than 0.005 μm2. Ultimately, the selection of an agent for injection into the reservoir should be driven by the criteria that allow assessing the applicability of the method under specific geological and physical conditions. In multilayer production objects, gas injection efficiency is influenced by a number of factors, in addition to displacement, including the ratio of gas volumes, the degree to which pressure is maintained in each reservoir, as well as how the well is operated. With the increase in production rate from 60 to 90 m3 / day during the re-injection of produced hydrocarbon gas, this study found that the oil recovery factor increased from 0.190 to 0.229. The further increase in flow rate to 150 m3 / day, however, led to a faster gas breakthrough, a decrease in the amount of oil produced, and a decrease in the oil recovery factor to 0.19. Based on the results of the research, methods for stimulating the formation of low-permeability reservoirs were ranked based on their efficacy.


Author(s):  
Sudad H AL-Obaidi ◽  
Miel Hofmann ◽  
Falah H. Khalaf ◽  
Hiba H. Alwan

The efficiency of gas injection for developing terrigenous deposits within a multilayer producing object is investigated in this article. According to the results of measurements of the 3D hydrodynamic compositional model, an assessment of the oil recovery factor was made. In the studied conditions, re-injection of the associated gas was found to be the most technologically efficient working agent. The factors contributing to the inefficacy of traditional methods of stimulating oil production such as multistage hydraulic fracturing when used to develop low-permeability reservoirs have been analyzed. The factors contributing to the inefficiency of traditional oil-production stimulation methods, such as multistage hydraulic fracturing, have been analysed when they are applied to low-permeability reservoirs. The use of a gas of various compositions is found to be more effective as a working agent for reservoirs with permeability less than 0.005 µm2. Ultimately, the selection of an agent for injection into the reservoir should be driven by the criteria that allow assessing the applicability of the method under specific geological and physical conditions. In multilayer production objects, gas injection efficiency is influenced by a number of factors, in addition to displacement, including the ratio of gas volumes, the degree to which pressure is maintained in each reservoir, as well as how the well is operated. With the increase in production rate from 60 to 90 m3 / day during the re-injection of produced hydrocarbon gas, this study found that the oil recovery factor increased from 0.190 to 0.229. The further increase in flow rate to 150 m3 / day, however, led to a faster gas breakthrough, a decrease in the amount of oil produced, and a decrease in the oil recovery factor to 0.19 Based on the results of the research, methods for stimulating the formation of low-permeability reservoirs were ranked based on their efficacy.


Author(s):  
Mvomo Ndzinga Edouard ◽  
Pingchuan Dong ◽  
Chinedu J. Okere ◽  
Luc Y. Nkok ◽  
Abakar Y. Adoum ◽  
...  

AbstractAfter single-gas (SG) injection operations in tight oil reservoirs, a significant amount of oil is still unrecovered. To increase productivity, several sequencing gas injection techniques have been utilized. Given the scarcity of research on multiple-gas alternating injection schemes, this study propose an optimized triple-alternating-gas (TAG) injection for improved oil recovery. The performance of the TAG process was demonstrated through numerical simulations and comparative analysis. First, a reservoir compositional model is developed to establish the properties and composition of the tight oil reservoir; then, a suitable combination for the SG, double alternating gas (DAG), and TAG was selected via a comparative simulation process. Second, the TAG process was optimized and the best case parameters were derived. Finally, based on the oil recovery factors and sweep efficiencies, a comparative simulation for SG, DAG, and TAG was performed and the mechanisms explained. The following findings were made: (1) The DAG and TAG provided a higher recovery factor than the SG injection and based on recovery factor and economic advantages, CO2 + CH4 + H2S was the best choice for the TAG process. (2) The results of the sensitivity analysis showed that the critical optimization factors for a TAG injection scheme are the injection and the production pressures. (3) After optimization, the recovery factor and sweep efficiency of the TAG injection scheme were the best. This study promotes the understanding of multiple-gas injection enhanced oil recovery (EOR) and serves as a guide to field design of gas EOR techniques.


Sign in / Sign up

Export Citation Format

Share Document