scholarly journals Verification of Infinite State Systems by Compositional Model Checking

Author(s):  
K. L. McMillan
2013 ◽  
Vol 24 (02) ◽  
pp. 211-232 ◽  
Author(s):  
ALESSANDRO CARIONI ◽  
SILVIO GHILARDI ◽  
SILVIO RANISE

We identify sufficient conditions to automatically establish the termination of a backward reachability procedure for infinite state systems by using well-quasi-orderings. Besides showing that backward reachability succeeds on many instances of problems covered by general termination results, we argue that it could predict termination also on interesting instances of the reachability problem that are outside the scope of applicability of such general results. We work in the declarative framework of Model Checking Modulo Theories that permits us to exploit recent advances in Satisfiability Modulo Theories solving and model-theoretic notions of first-order logic.


2006 ◽  
Vol 6 (3) ◽  
pp. 265-300 ◽  
Author(s):  
MORENO FALASCHI ◽  
ALICIA VILLANUEVA

The language Timed Concurrent Constraint (tccp) is the extension over time of the Concurrent Constraint Programming (cc) paradigm that allows us to specify concurrent systems where timing is critical, for example reactive systems. Systems which may have an infinite number of states can be specified in tccp. Model checking is a technique which is able to verify finite-state systems with a huge number of states in an automatic way. In the last years several studies have investigated how to extend model checking techniques to systems with an infinite number of states. In this paper we propose an approach which exploits the computation model of tccp. Constraint based computations allow us to define a methodology for applying a model checking algorithm to (a class of) infinite-state systems. We extend the classical algorithm of model checking for LTL to a specific logic defined for the verification of tccp and to the tccp Structure which we define in this work for modeling the program behavior. We define a restriction on the time in order to get a finite model and then we develop some illustrative examples. To the best of our knowledge this is the first approach that defines a model checking methodology for tccp.


Author(s):  
Makai Mann ◽  
Ahmed Irfan ◽  
Alberto Griggio ◽  
Oded Padon ◽  
Clark Barrett

AbstractWe develop a framework for model checking infinite-state systems by automatically augmenting them with auxiliary variables, enabling quantifier-free induction proofs for systems that would otherwise require quantified invariants. We combine this mechanism with a counterexample-guided abstraction refinement scheme for the theory of arrays. Our framework can thus, in many cases, reduce inductive reasoning with quantifiers and arrays to quantifier-free and array-free reasoning. We evaluate the approach on a wide set of benchmarks from the literature. The results show that our implementation often outperforms state-of-the-art tools, demonstrating its practical potential.


2014 ◽  
Vol 51 ◽  
pp. 333-376 ◽  
Author(s):  
F. Belardinelli ◽  
A. Lomuscio ◽  
F. Patrizi

Artifact systems are a novel paradigm for specifying and implementing business processes described in terms of interacting modules called artifacts. Artifacts consist of data and lifecycles, accounting respectively for the relational structure of the artifacts’ states and their possible evolutions over time. In this paper we put forward artifact-centric multi-agent systems, a novel formalisation of artifact systems in the context of multi-agent systems operating on them. Differently from the usual process-based models of services, we give a semantics that explicitly accounts for the data structures on which artifact systems are defined. We study the model checking problem for artifact-centric multi-agent systems against specifications expressed in a quantified version of temporal-epistemic logic expressing the knowledge of the agents in the exchange. We begin by noting that the problem is undecidable in general. We identify a noteworthy class of systems that admit bisimilar, finite abstractions. It follows that we can verify these systems by investigating their finite abstractions; we also show that the corresponding model checking problem is EXPSPACE-complete. We then introduce artifact-centric programs, compact and declarative representations of the programs governing both the artifact system and the agents. We show that, while these in principle generate infinite-state systems, under natural conditions their verification problem can be solved on finite abstractions that can be effectively computed from the programs. We exemplify the theoretical results here pursued through a mainstream procurement scenario from the artifact systems literature.


Sign in / Sign up

Export Citation Format

Share Document