scholarly journals Towards Metric Temporal Answer Set Programming

2020 ◽  
Vol 20 (5) ◽  
pp. 783-798
Author(s):  
PEDRO CABALAR ◽  
MARTÍN DIÉGUEZ ◽  
TORSTEN SCHAUB ◽  
ANNA SCHUHMANN

AbstractWe elaborate upon the theoretical foundations of a metric temporal extension of Answer Set Programming. In analogy to previous extensions of ASP with constructs from Linear Temporal and Dynamic Logic, we accomplish this in the setting of the logic of Here-and-There and its non-monotonic extension, called Equilibrium Logic. More precisely, we develop our logic on the same semantic underpinnings as its predecessors and thus use a simple time domain of bounded time steps. This allows us to compare all variants in a uniform framework and ultimately combine them in a common implementation.

2020 ◽  
Vol 177 (3-4) ◽  
pp. 275-296
Author(s):  
Manuel Bichler ◽  
Michael Morak ◽  
Stefan Woltran

State-of-the-art answer set programming (ASP) solvers rely on a program called a grounder to convert non-ground programs containing variables into variable-free, propositional programs. The size of this grounding depends heavily on the size of the non-ground rules, and thus, reducing the size of such rules is a promising approach to improve solving performance. To this end, in this paper we announce lpopt, a tool that decomposes large logic programming rules into smaller rules that are easier to handle for current solvers. The tool is specifically tailored to handle the standard syntax of the ASP language (ASP-Core) and makes it easier for users to write efficient and intuitive ASP programs, which would otherwise often require significant handtuning by expert ASP engineers. It is based on an idea proposed by Morak and Woltran (2012) that we extend significantly in order to handle the full ASP syntax, including complex constructs like aggregates, weak constraints, and arithmetic expressions. We present the algorithm, the theoretical foundations on how to treat these constructs, as well as an experimental evaluation showing the viability of our approach.


2017 ◽  
Vol 17 (4) ◽  
pp. 559-590
Author(s):  
YULIYA LIERLER ◽  
BENJAMIN SUSMAN

AbstractConstraint answer set programming is a promising research direction that integrates answer set programming with constraint processing. It is often informally related to the field of satisfiability modulo theories. Yet, the exact formal link is obscured as the terminology and concepts used in these two research areas differ. In this paper, we connect these two research areas by uncovering the precise formal relation between them. We believe that this work will boost the cross-fertilization of the theoretical foundations and the existing solving methods in both areas. As a step in this direction, we provide a translation from constraint answer set programs with integer linear constraints to satisfiability modulo linear integer arithmetic that paves the way to utilizing modern satisfiability modulo theories solvers for computing answer sets of constraint answer set programs.


2008 ◽  
Vol 9 (4) ◽  
pp. 1-53 ◽  
Author(s):  
Stijn Heymans ◽  
Davy Van Nieuwenborgh ◽  
Dirk Vermeir

2013 ◽  
Vol 29 (18) ◽  
pp. 2320-2326 ◽  
Author(s):  
Carito Guziolowski ◽  
Santiago Videla ◽  
Federica Eduati ◽  
Sven Thiele ◽  
Thomas Cokelaer ◽  
...  

2016 ◽  
Vol 16 (5-6) ◽  
pp. 800-816 ◽  
Author(s):  
DANIELA INCLEZAN

AbstractThis paper presents CoreALMlib, an $\mathscr{ALM}$ library of commonsense knowledge about dynamic domains. The library was obtained by translating part of the Component Library (CLib) into the modular action language $\mathscr{ALM}$. CLib consists of general reusable and composable commonsense concepts, selected based on a thorough study of ontological and lexical resources. Our translation targets CLibstates (i.e., fluents) and actions. The resulting $\mathscr{ALM}$ library contains the descriptions of 123 action classes grouped into 43 reusable modules that are organized into a hierarchy. It is made available online and of interest to researchers in the action language, answer-set programming, and natural language understanding communities. We believe that our translation has two main advantages over its CLib counterpart: (i) it specifies axioms about actions in a more elaboration tolerant and readable way, and (ii) it can be seamlessly integrated with ASP reasoning algorithms (e.g., for planning and postdiction). In contrast, axioms are described in CLib using STRIPS-like operators, and CLib's inference engine cannot handle planning nor postdiction.


AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 25-32 ◽  
Author(s):  
Benjamin Kaufmann ◽  
Nicola Leone ◽  
Simona Perri ◽  
Torsten Schaub

Answer set programming is a declarative problem solving paradigm that rests upon a workflow involving modeling, grounding, and solving. While the former is described by Gebser and Schaub (2016), we focus here on key issues in grounding, or how to systematically replace object variables by ground terms in a effective way, and solving, or how to compute the answer sets of a propositional logic program obtained by grounding.


Sign in / Sign up

Export Citation Format

Share Document