Long-read sequencing reveals increased occurrence of genomic variants and adenosine methylation in Bacillus pumilus SAFR-032 after long-duration flight exposure onboard the International Space Station

Author(s):  
Samantha M. Waters ◽  
S. Marshall Ledford ◽  
Amanda Wacker ◽  
Sonali Verma ◽  
Bianca Serda ◽  
...  

Abstract Bacillus pumilus SAFR-032, an endospore-forming bacterial strain, was investigated to determine its methylation pattern (methylome) change, compared to ground control, after direct exposure to space conditions onboard the International Space Station (ISS) for 1.5 years. The resulting ISS-flown and non-flown strains were sequenced using the Nanopore MinION and an in-house method and pipeline to identify methylated positions in the genome. Our analysis indicated genomic variants and m6A methylation increased in the ISS-flown SAFR-032. To complement the broader omics investigation and explore phenotypic changes, ISS-flown and non-flown strains were compared in a series of laboratory-based chamber experiments using an X-ray irradiation source (doses applied at 250, 500, 750, 1000 and 1250 Gy); results show a potentially higher survival fraction of ISS-flown DS2 at the two highest exposures. Taken together, results from this study document lasting changes to the genome by methylation, potentially triggered by conditions in spaceflight, with functional consequences for the resistance of bacteria to stressors expected on long-duration missions beyond low Earth orbit.

2014 ◽  
Vol 14 (1) ◽  
pp. 67-77 ◽  
Author(s):  
H. Cottin ◽  
K. Saiagh ◽  
Y.Y. Guan ◽  
M. Cloix ◽  
D. Khalaf ◽  
...  

AbstractThe study of the evolution of organic matter subjected to space conditions, and more specifically to Solar photons in the vacuum ultraviolet range (120–200 nm) has been undertaken in low-Earth orbit since the 1990s, and implemented on various space platforms. This paper describes a photochemistry experiment called AMINO, conducted during 22 months between 2009 and 2011 on the EXPOSE-R ESA facility, outside the International Space Station. Samples with relevance to astrobiology (connected to comets, carbonaceous meteorites and micrometeorites, the atmosphere of Titan and RNA world hypothesis) have been selected and exposed to space environment. They have been analysed after return to the Earth. This paper is not discussing the results of the experiment, but rather gives a general overview of the project, the details of the hardware used, its configuration and recent developments to enable long-duration exposure of gaseous samples in tight closed cells enabling for the first time to derive quantitative results from gaseous phase samples exposed in space.


Subject Space stations. Significance As Washington returns its sights to the moon, it is reforming its policies regarding the International Space Station (ISS) with a view to jump-starting a 'low-earth orbit economy' in which private firms offer services to corporate clients, foreign governments and wealthy individuals. Impacts China's space station, due for completion in 2022, could draw third-country projects away from commercial US space stations. Governments are more promising clients for commercial crewed spaceflight than 'space tourists' are. Commercial stations and passenger spacecraft could make human spaceflight accessible to allied states. Spaceflight will remain politicised.


Sign in / Sign up

Export Citation Format

Share Document