ON STABILITY OF PHYSICALLY REASONABLE SOLUTIONS TO THE TWO-DIMENSIONAL NAVIER–STOKES EQUATIONS

Author(s):  
Yasunori Maekawa

The flow past an obstacle is a fundamental object in fluid mechanics. In 1967 Finn and Smith proved the unique existence of stationary solutions, called the physically reasonable solutions, to the Navier–Stokes equations in a two-dimensional exterior domain modeling this type of flows when the Reynolds number is sufficiently small. The asymptotic behavior of their solution at spatial infinity has been studied in detail and well understood by now, while its stability has remained open due to the difficulty specific to the two-dimensionality. In this paper, we prove that the physically reasonable solutions constructed by Finn and Smith are asymptotically stable with respect to small and well-localized initial perturbations.

1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


2021 ◽  
Vol 14 (2) ◽  
pp. 40-45
Author(s):  
D. V. VORONIN ◽  

The Navier-Stokes equations have been used for numerical modeling of chemically reacting gas flow in the propulsion chamber. The chamber represents an axially symmetrical plane disk. Fuel and oxidant were fed into the chamber separately at some angle to the inflow surface and not parallel one to another to ensure better mixing of species. The model is based on conservation laws of mass, momentum, and energy for nonsteady two-dimensional compressible gas flow in the case of axial symmetry. The processes of viscosity, thermal conductivity, turbulence, and diffusion of species have been taken into account. The possibility of detonation mode of combustion of the mixture in the chamber was numerically demonstrated. The detonation triggering depends on the values of angles between fuel and oxidizer jets. This type of the propulsion chamber is effective because of the absence of stagnation zones and good mixing of species before burning.


Sign in / Sign up

Export Citation Format

Share Document