Next-generation genebanking: plant genetic resources management and utilization in the sequencing era

2014 ◽  
Vol 12 (3) ◽  
pp. 298-307 ◽  
Author(s):  
Rob van Treuren ◽  
Theo J. L. van Hintum

Advances in sequencing technologies have made it possible to analyse large amounts of germplasm against low production costs, which has opened the door to screen genebank collections more efficiently for DNA sequence variation. The present study explores how these developments may affect the operations of genebanks and, consequently, how genebank agendas may change. It is argued that the new developments are more likely to have an impact on the user-oriented activities than the housekeeping operations of genebanks. To better facilitate the user community, genebanks may have to strengthen their core business, in particular, by improving quality management procedures and by providing access to a wider diversity of a crop's gene pool. In addition, genebanks may have to provide novel services, such as the introduction of specific user-oriented collection types, including research populations and genetically purified lines, and the development of novel information services, including plant genetic resources portals that should guide users to the information and materials of specific interest. To improve their user-oriented services, genebanks need to increase their communication and collaboration with the user community and to develop strategic alliances with this sector.

Crop Science ◽  
2019 ◽  
Vol 59 (3) ◽  
pp. 853-857 ◽  
Author(s):  
Gayle M. Volk ◽  
Deana Namuth-Covert ◽  
Patrick F. Byrne

2010 ◽  
Vol 8 (2) ◽  
pp. 171-181 ◽  
Author(s):  
C. C. M. van de Wiel ◽  
T. Sretenović Rajičić ◽  
R. van Treuren ◽  
K. J. Dehmer ◽  
C. G. van der Linden ◽  
...  

Genetic variation in Lactuca serriola, the closest wild relative of cultivated lettuce, was studied across Europe from the Czech Republic to the United Kingdom, using three molecular marker systems, simple sequence repeat (SSR, microsatellites), AFLP and nucleotide-binding site (NBS) profiling. The ‘functional’ marker system NBS profiling, targeting disease resistance genes of the NBS/LRR family, did not show marked differences in genetic diversity parameters to the other systems. The autogamy of the species resulted in low observed heterozygosity and high population differentiation. Intra-population variation ranged from complete homogeneity to nearly complete heterogeneity. The highest genetic diversity was found in central Europe. The SSR results were compared to SSR variation screened earlier in the lettuce collection of the Centre for Genetic Resources, the Netherlands (CGN). In the UK, practically only a single SSR genotype was found. This genotype together with a few other common SSR genotypes comprised a large part of the plants sampled on the continent. Among the ten most frequent SSR genotypes observed, eight were already present in the CGN collection. Overall, the CGN collection appears to already have a fair representation of genetic variation from NW Europe. The results are discussed in relation to sampling strategies for improving genebank collections of crop wild relatives.


F1000Research ◽  
2022 ◽  
Vol 11 ◽  
pp. 12
Author(s):  
Franco Röckel ◽  
Toni Schreiber ◽  
Danuta Schüler ◽  
Ulrike Braun ◽  
Ina Krukenberg ◽  
...  

With the ongoing cost decrease of genotyping and sequencing technologies, accurate and fast phenotyping remains the bottleneck in the utilizing of plant genetic resources for breeding and breeding research. Although cost-efficient high-throughput phenotyping platforms are emerging for specific traits and/or species, manual phenotyping is still widely used and is a time- and money-consuming step. Approaches that improve data recording, processing or handling are pivotal steps towards the efficient use of genetic resources and are demanded by the research community. Therefore, we developed PhenoApp, an open-source Android app for tablets and smartphones to facilitate the digital recording of phenotypical data in the field and in greenhouses. It is a versatile tool that offers the possibility to fully customize the descriptors/scales for any possible scenario, also in accordance with international information standards such as MIAPPE (Minimum Information About a Plant Phenotyping Experiment) and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles. Furthermore, PhenoApp enables the use of pre-integrated ready-to-use BBCH (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemische Industrie) scales for apple, cereals, grapevine, maize, potato, rapeseed and rice. Additional BBCH scales can easily be added. The simple and adaptable structure of input and output files enables an easy data handling by either spreadsheet software or even the integration in the workflow of laboratory information management systems (LIMS). PhenoApp is therefore a decisive contribution to increase efficiency of digital data acquisition in genebank management but also contributes to breeding and breeding research by accelerating the labour intensive and time-consuming acquisition of phenotyping data.


2019 ◽  
Vol 79 (01S) ◽  
Author(s):  
Kuldeep Singh ◽  
Sandeep Kumar ◽  
S. Raj Kumar ◽  
Mohar Singh ◽  
Kavita Gupta

Plant Genetic Resources (PGR) conserved in gene bank provides genetic variability for efficient utilization in breeding programmes. Pre-breeding is required for broadening the genetic base of the crop through identification of useful traits in un-adapted materials and transfer them into better adapted ones for further breeding. So, pre-breeding is a promising alternative (due to use of un-adapted materials) to link genetic resources and breeding programs. Utilization of PGR in crop improvement programmes including prebreeding have been very limited. Advances in genomics have provided us with high-quality reference genomes, sequencing and re-sequencing platforms with reduced cost, marker and QTL assisted selection, genomic selection and population level genotyping platforms. Further, genome editing tools like, CRISPR/Cas9 and its latest modification base editing technology can be used to generate target specific mutants and are important for establishing gene functions with respect to their phenotypes through developing knockout mutations. These new genomic tools can be used to generate, analyse and manipulate the genetic variability for designing cultivars with the desired traits. The genomic tools has not only accelerated the utilization of PGR but also assisted pre-breeding through rapid selection of trait-specific germplasm, reduced periods in breeding cycle for confirming gene of interest in intermediate material and validation of transfer of gene of interest in the cultivated gene pool. In crops, where limited genetic and genomic resources are available, pre-breeding becomes very challenging. We can say that genomics assisted utilization of PGR and prebreeding has accelerated the pace of introgression of complex traits in different crop cultivars.and yield plateau has already been achieved in these cultivars (Chen et al. 2014a). Under these circumstances, use of Plant Genetic Resources (PGR) in crop improvement programs provides an avenue to solve the problem.


Sign in / Sign up

Export Citation Format

Share Document