Complex Traits
Recently Published Documents


TOTAL DOCUMENTS

2364
(FIVE YEARS 1391)

H-INDEX

104
(FIVE YEARS 36)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhongzi Wu ◽  
Huanfa Gong ◽  
Zhimin Zhou ◽  
Tao Jiang ◽  
Ziqi Lin ◽  
...  

Abstract Background Short tandem repeats (STRs) were recently found to have significant impacts on gene expression and diseases in humans, but their roles on gene expression and complex traits in pigs remain unexplored. This study investigates the effects of STRs on gene expression in liver tissues based on the whole-genome sequences and RNA-Seq data of a discovery cohort of 260 F6 individuals and a validation population of 296 F7 individuals from a heterogeneous population generated from crosses among eight pig breeds. Results We identified 5203 and 5868 significantly expression STRs (eSTRs, FDR < 1%) in the F6 and F7 populations, respectively, most of which could be reciprocally validated (π1 = 0.92). The eSTRs explained 27.5% of the cis-heritability of gene expression traits on average. We further identified 235 and 298 fine-mapped STRs through the Bayesian fine-mapping approach in the F6 and F7 pigs, respectively, which were significantly enriched in intron, ATAC peak, compartment A and H3K4me3 regions. We identified 20 fine-mapped STRs located in 100 kb windows upstream and downstream of published complex trait-associated SNPs, which colocalized with epigenetic markers such as H3K27ac and ATAC peaks. These included eSTR of the CLPB, PGLS, PSMD6 and DHDH genes, which are linked with genome-wide association study (GWAS) SNPs for blood-related traits, leg conformation, growth-related traits, and meat quality traits, respectively. Conclusions This study provides insights into the effects of STRs on gene expression traits. The identified eSTRs are valuable resources for prioritizing causal STRs for complex traits in pigs.


2022 ◽  
Vol 12 ◽  
Author(s):  
Segun Fatumo ◽  
Tinashe Chikowore ◽  
Karoline Kuchenbaecker
Keyword(s):  

2022 ◽  
Author(s):  
Ying Ma ◽  
Snehal Patil ◽  
Xiang Zhou ◽  
Bhramar Mukherjee ◽  
Lars G. Fritsche

Complex traits are influenced by genetic risk factors, lifestyle, and environmental variables, so called exposures. Some exposures, e.g., smoking or lipid levels, have common genetic modifiers identified in genome-wide association studies. Since measurements are often unfeasible, Exposure Polygenic Risk Scores (ExPRSs) offer an alternative to study the influence of exposures on various phenotypes. Here, we collected publicly available summary statistics for 28 exposures and applied four common PRS methods to generate ExPRSs in two large biobanks, the Michigan Genomics Initiative and the UK Biobank. We established ExPRS for 27 exposures and demonstrated their applicability in phenome-wide association studies and as predictors for common chronic conditions. Especially, the addition of multiple ExPRSs showed, for several chronic conditions, an improvement compared prediction models that only included traditional, disease-focused PRSs. To facilitate follow-up studies, we share all ExPRS constructs and generated results via an online repository called ExPRSweb.


Rice ◽  
2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Jiongjiong Fan ◽  
Hua Hua ◽  
Zhaowei Luo ◽  
Qi Zhang ◽  
Mengjiao Chen ◽  
...  

AbstractRice is one of the most important food crops in Asia. Genetic analyses of complex traits and molecular breeding studies in rice greatly rely on the construction of various genetic populations. Chromosome segment substitution lines (CSSLs) serve as a powerful genetic population for quantitative trait locus (QTL) mapping in rice. Moreover, CSSLs containing target genomic regions can be used as improved varieties in rice breeding. In this study, we developed a set of CSSLs consisting of 117 lines derived from the recipient ‘Huanghuazhan’ (HHZ) and the donor ‘Basmati Surkb 89–15’ (BAS). The 117 lines were extensively genotyped by whole-genome resequencing, and a high-density genotype map was constructed for the CSSL population. The 117 CSSLs covered 99.78% of the BAS genome. Each line contained a single segment, and the average segment length was 6.02 Mb. Using the CSSL population, we investigated three agronomic traits in Shanghai and Hangzhou, China, and a total of 25 QTLs were detected in both environments. Among those QTLs, we found that RFT1 was the causal gene for heading date variance between HHZ and BAS. RFT1 from BAS was found to contain a loss-of-function allele based on yeast two-hybrid assay, and its causal variation was a P to S change in the 94th amino acid of the RFT1 protein. The combination of high-throughput genotyping and marker-assisted selection (MAS) is a highly efficient way to construct CSSLs in rice, and extensively genotyped CSSLs will be a powerful tool for the genetic mapping of agronomic traits and molecular breeding for target QTLs/genes.


2022 ◽  
Author(s):  
Wenmin Zhang ◽  
Hamed Najafabadi ◽  
Yue Li

Abstract Identifying causal variants from genome-wide association studies (GWASs) is challenging due to widespread linkage disequilibrium (LD). Functional annotations of the genome may help prioritize variants that are biologically relevant and thus improve fine-mapping of GWAS results. However, classical fine-mapping methods have a high computational cost, particularly when the underlying genetic architecture and LD patterns are complex. Here, we propose a novel approach, SparsePro, to efficiently conduct genome-wide fine-mapping. Our method enjoys two major innovations: First, by creating a sparse low-dimensional projection of the high-dimensional genotype data, we enable a linear search of causal variants instead of a combinatorial search of causal configurations used in most existing methods; Second, we adopt a probabilistic framework with a highly efficient variational expectation-maximization algorithm to integrate statistical associations and functional priors. We evaluate SparsePro through extensive simulations using resources from the UK Biobank. Compared to state-of-the-art methods, SparsePro achieved more accurate and well-calibrated posterior inference with greatly reduced computation time. We demonstrate the utility of SparsePro by investigating the genetic architecture of five functional biomarkers of vital organs. We show that, compared to other methods, the causal variants identified by SparsePro are highly enriched for expression quantitative trait loci and explain a larger proportion of trait heritability. We also identify potential causal variants contributing to the genetically encoded coordination mechanisms between vital organs, and pinpoint target genes with potential pleiotropic effects. In summary, we have developed an efficient genome-wide fine-mapping method with the ability to integrate functional annotations. Our method may have wide utility in understanding the genetics of complex traits as well as in increasing the yield of functional follow-up studies of GWASs. SparsePro software is available on GitHub at https://github.com/zhwm/SparsePro.


Author(s):  
Gisela Orozco

AbstractSince 2005, thousands of genome-wide association studies (GWAS) have been published, identifying hundreds of thousands of genetic variants that increase risk of complex traits such as autoimmune diseases. This wealth of data has the potential to improve patient care, through personalized medicine and the identification of novel drug targets. However, the potential of GWAS for clinical translation has not been fully achieved yet, due to the fact that the functional interpretation of risk variants and the identification of causal variants and genes are challenging. The past decade has seen the development of great advances that are facilitating the overcoming of these limitations, by utilizing a plethora of genomics and epigenomics tools to map and characterize regulatory elements and chromatin interactions, which can be used to fine map GWAS loci, and advance our understanding of the biological mechanisms that cause disease.


2022 ◽  
Author(s):  
Amy Moore ◽  
Jesse Marks ◽  
Bryan C Quach ◽  
Yuelong Guo ◽  
Laura J Bierut ◽  
...  

Where sufficiently large genome-wide association study (GWAS) samples are not currently available or feasible, methods that leverage increasing knowledge of the biological function of variants may illuminate discoveries without increasing sample size. We comprehensively evaluated 18 functional weighting methods for identifying novel associations. We assessed the performance of these methods using published results from multiple GWAS waves across each of five complex traits. Although no method achieved both high sensitivity and positive predictive value (PPV) for any trait, a subset of methods utilizing pleiotropy and expression quantitative trait loci nominated variants with high PPV (>75%) for multiple traits. Application of functionally weighting methods to enhance GWAS power for locus discovery is unlikely to circumvent the need for larger sample sizes in truly underpowered GWAS, but these results suggest that applying functional weighting to GWAS can accurately nominate additional novel loci from available samples for follow-up studies.


2022 ◽  
Vol 12 ◽  
Author(s):  
Richard F. Oppong ◽  
Thibaud Boutin ◽  
Archie Campbell ◽  
Andrew M. McIntosh ◽  
David Porteous ◽  
...  

We describe a genome-wide analytical approach, SNP and Haplotype Regional Heritability Mapping (SNHap-RHM), that provides regional estimates of the heritability across locally defined regions in the genome. This approach utilises relationship matrices that are based on sharing of SNP and haplotype alleles at local haplotype blocks delimited by recombination boundaries in the genome. We implemented the approach on simulated data and show that the haplotype-based regional GRMs capture variation that is complementary to that captured by SNP-based regional GRMs, and thus justifying the fitting of the two GRMs jointly in a single analysis (SNHap-RHM). SNHap-RHM captures regions in the genome contributing to the phenotypic variation that existing genome-wide analysis methods may fail to capture. We further demonstrate that there are real benefits to be gained from this approach by applying it to real data from about 20,000 individuals from the Generation Scotland: Scottish Family Health Study. We analysed height and major depressive disorder (MDD). We identified seven genomic regions that are genome-wide significant for height, and three regions significant at a suggestive threshold (p-value &lt; 1 × 10−5) for MDD. These significant regions have genes mapped to within 400 kb of them. The genes mapped for height have been reported to be associated with height in humans. Similarly, those mapped for MDD have been reported to be associated with major depressive disorder and other psychiatry phenotypes. The results show that SNHap-RHM presents an exciting new opportunity to analyse complex traits by allowing the joint mapping of novel genomic regions tagged by either SNPs or haplotypes, potentially leading to the recovery of some of the “missing” heritability.


Genetics ◽  
2022 ◽  
Author(s):  
Stuart J Macdonald ◽  
Kristen M Cloud-Richardson ◽  
Dylan J Sims-West ◽  
Anthony D Long

Abstract Despite the value of Recombinant Inbred Lines (RILs) for the dissection of complex traits, large panels can be difficult to maintain, distribute, and phenotype. An attractive alternative to RILs for many traits leverages selecting phenotypically extreme individuals from a segregating population, and subjecting pools of selected and control individuals to sequencing. Under a bulked or extreme segregant analysis paradigm, genomic regions contributing to trait variation are revealed as frequency differences between pools. Here we describe such an extreme quantitative trait locus, or X-QTL, mapping strategy that builds on an existing multiparental population, the DSPR (Drosophila Synthetic Population Resource), and involves phenotyping and genotyping a population derived by mixing hundreds of DSPR RILs. Simulations demonstrate that challenging, yet experimentally tractable X-QTL designs ( &gt; =4 replicates, &gt; =5000 individuals/replicate, and selecting the 5-10% most extreme animals) yield at least the same power as traditional RIL-based QTL mapping and can localize variants with sub-centimorgan resolution. We empirically demonstrate the effectiveness of the approach using a 4-fold replicated X-QTL experiment that identifies 7 QTL for caffeine resistance. Two mapped X-QTL factors replicate loci previously identified in RILs, 6/7 are associated with excellent candidate genes, and RNAi knock-downs support the involvement of 4 genes in the genetic control of trait variation. For many traits of interest to drosophilists, a bulked phenotyping/genotyping X-QTL design has considerable advantages.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jana Ebersbach ◽  
Nazifa Azam Khan ◽  
Ian McQuillan ◽  
Erin E. Higgins ◽  
Kyla Horner ◽  
...  

Phenotyping is considered a significant bottleneck impeding fast and efficient crop improvement. Similar to many crops, Brassica napus, an internationally important oilseed crop, suffers from low genetic diversity, and will require exploitation of diverse genetic resources to develop locally adapted, high yielding and stress resistant cultivars. A pilot study was completed to assess the feasibility of using indoor high-throughput phenotyping (HTP), semi-automated image processing, and machine learning to capture the phenotypic diversity of agronomically important traits in a diverse B. napus breeding population, SKBnNAM, introduced here for the first time. The experiment comprised 50 spring-type B. napus lines, grown and phenotyped in six replicates under two treatment conditions (control and drought) over 38 days in a LemnaTec Scanalyzer 3D facility. Growth traits including plant height, width, projected leaf area, and estimated biovolume were extracted and derived through processing of RGB and NIR images. Anthesis was automatically and accurately scored (97% accuracy) and the number of flowers per plant and day was approximated alongside relevant canopy traits (width, angle). Further, supervised machine learning was used to predict the total number of raceme branches from flower attributes with 91% accuracy (linear regression and Huber regression algorithms) and to identify mild drought stress, a complex trait which typically has to be empirically scored (0.85 area under the receiver operating characteristic curve, random forest classifier algorithm). The study demonstrates the potential of HTP, image processing and computer vision for effective characterization of agronomic trait diversity in B. napus, although limitations of the platform did create significant variation that limited the utility of the data. However, the results underscore the value of machine learning for phenotyping studies, particularly for complex traits such as drought stress resistance.


Sign in / Sign up

Export Citation Format

Share Document