scholarly journals The Movement of Small Particulate Matter in the Early Solar System and the Formation of Satellites

1974 ◽  
Vol 3 ◽  
pp. 483-485
Author(s):  
T. Gold

Satellites are a common feature in the solar system, and all planets on which satellite orbits would be stable possess them. (For Mercury the solar perturbation is too large, and the retrograde spin of Venus would cause satellites to spiral in to the planet through tidal friction.) An explanation of the formation of satellites must hence be one which makes the phenomenon exceedingly probable at some stage in the solar system formation processes, and very improbable processes like a capture cannot be the answer in most cases.Small particulate matter must have been very abundant in the early solar nebula. Such particulate matter must have existed both from the first condensation of the low vapor pressure components of the gas in the first round, and it must also have been composed of material scattered from impacts after some major bodies had begun to form, frequently finding themselves no doubt on collision orbits.

Elements ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 231-236 ◽  
Author(s):  
Charles K. Shearer ◽  
Steven B. Simon

The behavior of boron during the early evolution of the Solar System provides the foundation for how boron reservoirs become established in terrestrial planets. The abundance of boron in the Sun is depleted relative to adjacent light elements, a result of thermal nuclear reactions that destroy boron atoms. Extant boron was primarily generated by spallation reactions. In the initial materials condensing from the solar nebula, boron was predominantly incorporated into plagioclase. Boron abundances in the terrestrial planets exhibit variability, as illustrated by B/Be. During planetary formation and differentiation, boron is redistributed by fluids at low temperature and during crystallization of magma oceans at high temperature.


2021 ◽  
Author(s):  
Kiyoshi Kuramoto ◽  

<p>MMX (Martian Moons eXploration) is the 3rd sample return mission of JAXA/ISAS following Hayabusa and Hayabusa2. The MMX spacecraft will be launched in 2024 by an H-III rocket and make a round trip to the Martian system ~5 years. In the proximity of the Martian moons for 3 years, MMX will observe them along with the Martian atmosphere and surrounding space and conduct multiple landings on Phobos to collect Phoboss-indigenous materials. Owing to the lack of definitive evidence, the origin of Phobos and Deimos is under debate between the two leading hypotheses: the capture of volatile-rich primordial asteroid(s) and the in-situ formation from a debris disk that generated by a giant impact onto early Mars. Whichever theory is correct, the Martian moons likely preserve key records on the evolution of the early solar system and the formation of Mars. Through close-up observations of both moons and sample return from Phobos, MMX will settle the controversy of their origin, reveal their evolution, and elucidate the early solar system evolution around the region near the snow line. Global circulation and escape of the Martian atmosphere will also be monitored to reveal basic processes that have shaped and altered the Martian surface environment. The MMX spacecraft consists of three modules with chemical propulsion systems. By releasing used modules at appropriate timings, the spacecraft mass is reduced to allow orbital tuning to quasi-satellite orbits around Phobos, landings on Phobos surface, and the escape from the Martian gravity to return to the Earth. MMX will arrive at the Martian system in 2025 and start close-up observations of Phobos from quasi-satellite orbits. Among the total of 7 mounted instruments for scientific observations, TENGOO (telescope camera) and LIDAR will conduct high-resolution topography mapping and OROCHI (multi-band visible camera), MIRS (infra-red spectrometer provided by CNES), MEGANE (gamma-ray and neutron spectrometer provided by NASA), and MSA (ion mass spectrum analyzer) will survey surface composition and its heterogeneity. Hydrous minerals and interior ice are important observational targets because they, if identified, strongly support the capture hypothesis. Data taken by these instruments will be also useful for the landing site selection and characterization. Before the first landing, a rover (provided by CNES/DLR) will be released near the sampling site to collect data on surface regolith properties to be referred for the mothership landing operation. The rover will carry cameras, miniRAD (thermal mapper), and RAX (laser Raman spectrometer) to collect data on the physical and mineralogical characteristics of the Phobos surface around the sampling site. In early 2027, Mars will come to its closest approach to the Earth which minimizes the communication delay between the spacecraft and the Earth station. Together with the timing relatively far from Sun-Mars conjunctions and the Martian equinoxes, this period is the most favorable for landing operations that need real-time communication with the ground station and solar illumination undisturbed by eclipses. MMX will use two sampling systems, the C-sampler using a coring mechanism equipped on the tip of a manipulator and the P-sampler (provided by NASA) using a pneumatic mechanism equipped on a landing leg. After the stay near Phobos, the MMX spacecraft will be transferred to Deimos-flyby orbits to conduct Deimos observations, and then the return module will depart the Martian system in 2028. During the stay in the Martian system, MMX will also conduct wide-area observations of the Martian atmosphere using imagers (OROCHI, MIRS, and TENGOO) to study the atmospheric dynamics and the water vapor and dust transport. Simultanenousely, MSA will survey ions not only released and sputtered from Phobos's surface but also escaped from the Martian upper atmosphere. CMDM (dust monitor) will continuously survey the dust flux around the moons to assess the processes of space weathering by micrometeoroid bombardments and the possible formation of dust rings along the moons’ orbits. The sample capsule will come back to the Earth in 2029. Complimentarily with remote sensing studies, returned samples will provide us strong cosmo-chemical constraints for the origin of Phobos as well as those for early solar system processes.   </p>


2018 ◽  
Vol 14 (S345) ◽  
pp. 78-82
Author(s):  
Vikram V. Dwarkadas ◽  
Nicolas Dauphas ◽  
Bradley Meyer ◽  
Peter Boyajian ◽  
Michael Bojazi

AbstractA constraint on Solar System formation is the high 26Al/27Al abundance ratio, 17 times higher than the average Galactic ratio, while the 60Fe/56Fe value was lower than the Galactic value. This challenges the assumption that a nearby supernova was responsible for the injection of these short-lived radionuclides into the early Solar System. We suggest that the Solar System was formed by triggered star formation at the edge of a Wolf-Rayet (W-R) bubble. We discuss the details of various processes within the model using numerical simulations, and analytic and semi-analytic calculations, and conclude that it is a viable model that can explain the initial abundances of 26Al and 60Fe. We estimate that 1%-16% of all Sun-like stars could have formed in such a setting.


2012 ◽  
Vol 761 (2) ◽  
pp. 137 ◽  
Author(s):  
Ming-Chang Liu ◽  
Marc Chaussidon ◽  
Gopalan Srinivasan ◽  
Kevin D. McKeegan

2011 ◽  
Vol 7 (S280) ◽  
pp. 261-274 ◽  
Author(s):  
Dominique Bockelée-Morvan

AbstractComets are made of ices, organics and minerals that record the chemistry of the outer regions of the primitive solar nebula where they agglomerated 4.6 Gyr ago. Compositional analyses of comets can provide important clues on the chemical and physical processes that occurred in the early phases of Solar System formation, and possibly in the natal molecular cloud that predated the formation of the solar nebula. This paper presents a short review of our present knowledge of the composition of comets. Implications for the origin of cometary materials are discussed.


Sign in / Sign up

Export Citation Format

Share Document