refractory metal
Recently Published Documents


TOTAL DOCUMENTS

759
(FIVE YEARS 64)

H-INDEX

43
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7615
Author(s):  
Tophan Thandorn ◽  
Panos Tsakiropoulos

We studied the effect of the addition of Hf, Sn, or Ta on the density, macrosegregation, microstructure, hardness and oxidation of three refractory metal intermetallic composites based on Nb (RM(Nb)ICs) that were also complex concentrated alloys (i.e., RM(Nb)ICs/RCCAs), namely, the alloys TT5, TT6, and TT7, which had the nominal compositions (at.%) Nb-24Ti-18Si-5Al-5B-5Cr-6Ta, Nb-24Ti-18Si-4Al-6B-5Cr-4Sn and Nb-24Ti-17Si-5Al-6B-5Cr-5Hf, respectively. The alloys were compared with B containing and B free RM(Nb)ICs. The macrosegregation of B, Ti, and Si was reduced with the addition, respectively of Hf, Sn or Ta, Sn or Ta, and Hf or Sn. All three alloys had densities less than 7 g/cm3. The alloy TT6 had the highest specific strength in the as cast and heat-treated conditions, which was also higher than that of RCCAs and refractory metal high entropy alloys (RHEAs). The bcc solid solution Nbss and the tetragonal T2 and hexagonal D88 silicides were stable in the alloys TT5 and TT7, whereas in TT6 the stable phases were the A15-Nb3Sn and the T2 and D88 silicides. All three alloys did not pest at 800 °C, where only the scale that was formed on TT5 spalled off. At 1200 °C, the scale of TT5 spalled off, but not the scales of TT6 and TT7. Compared with the B free alloys, the synergy of B with Ta was the least effective regarding oxidation at 800 and 1200 °C. Macrosegregation of solutes, the chemical composition of phases, the hardness of the Nbss and the alloys, and the oxidation of the alloys at 800 and 1200 °C were considered from the perspective of the Niobium Intermetallic Composite Elaboration (NICE) alloy design methodology. Relationships between properties and the parameters VEC, δ, and Δχ of alloy or phase and between parameters were discussed. The trends of parameters and the location of alloys and phases in parameter maps were in agreement with NICE.


Author(s):  
Vladimir Sergeevich Dolmatov ◽  
Sergey Kuznetsov

Abstract Coatings of TaC and NbC and Mo2C crystals on carbon fibers were obtained by currentless transfer in molten salts. Investigation of electrocatalytic properties of these compositions in the reaction of the hydrogen peroxide decomposition was carried out. It was determined that the hydrogen peroxide decomposition reaction has a zero order for all refractory metal carbides. Using the values of the rate constants at different temperatures the activation energies for the reaction of the hydrogen peroxide decomposition on refractory metal carbides were calculated using the Arrhenius equation. It has been established that coating of NbC on carbon fibers has a higher electrocatalytical properties in comparison with other carbides. The electrocatalytic properties of NbC/C, TaC/C and Mo2C/C composites were studied also by cyclic voltammetry.


2021 ◽  
Vol 119 (21) ◽  
pp. 211901
Author(s):  
T. E. Whitfield ◽  
G. J. Wise ◽  
H. J. Stone ◽  
N. G. Jones

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6101
Author(s):  
Tophan Thandorn ◽  
Panos Tsakiropoulos

This paper is about metallic ultra-high temperature materials, in particular, refractory metal intermetallic composites based on Nb, i.e., RM(Nb)ICs, with the addition of boron, which are compared with refractory metal high entropy alloys (RHEAs) or refractory metal complex concentrated alloys (RCCAs). We studied the effect of B addition on the density, macrosegregation, microstructure, hardness and oxidation of four RM(Nb)IC alloys, namely the alloys TT2, TT3, TT4 and TT8 with nominal compositions (at.%) Nb-24Ti-16Si-5Cr-7B, Nb-24Ti-16Si-5Al-7B, Nb-24Ti-18Si-5Al-5Cr-8B and Nb-24Ti-17Si-3.5Al-5Cr-6B-2Mo, respectively. The alloys made it possible to compare the effect of B addition on density, hardness or oxidation with that of Ge or Sn addition. The alloys were made using arc melting and their microstructures were characterised in the as cast and heat-treated conditions. The B macrosegregation was highest in TT8. The macrosegregation of Si or Ti increased with the addition of B and was lowest in TT8. The alloy TT8 had the lowest density of 6.41 g/cm3 and the highest specific strength at room temperature, which was also higher than that of RCCAs and RHEAs. The Nbss and T2 silicide were stable in the alloys TT2 and TT3, whereas in TT4 and TT8 the stable phases were the Nbss and the T2 and D88 silicides. Compared with the Ge or Sn addition in the same reference alloy, the B and Ge addition was the least and most effective at 800 °C (i.e., in the pest regime), when no other RM was present in the alloy. Like Ge or Sn, the B addition in TT2, TT3 and TT4 did not suppress scale spallation at 1200 °C. Only the alloy TT8 did not pest and its scales did not spall off at 800 and 1200 °C. The macrosegregation of Si and Ti, the chemical composition of Nbss and T2, the microhardness of Nbss and the hardness of alloys, and the oxidation of the alloys at 800 and 1200 °C were also viewed from the perspective of the alloy design methodology NICE and relationships with the alloy or phase parameters VEC, δ and Δχ. The trends of these parameters and the location of alloys and phases in parameter maps were found to be in agreement with NICE.


Author(s):  
Boxi Jin ◽  
Xu Huang ◽  
Mingqing Zou ◽  
Yujie Zhao ◽  
Shenggao Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darius Mofakhami ◽  
Benjamin Seznec ◽  
Tiberiu Minea ◽  
Romaric Landfried ◽  
Philippe Testé ◽  
...  

2021 ◽  
Vol 68 (9) ◽  
pp. 4278-4282
Author(s):  
Alexander M. Potts ◽  
Sanyam Bajaj ◽  
David R. Daughton ◽  
Andrew A. Allerman ◽  
Andrew M. Armstrong ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 987
Author(s):  
Min-Sang Kim ◽  
Hyun-Joo Choi ◽  
Tohru Sekino ◽  
Young-Do Kim ◽  
Se-Hoon Kim

This study synthesized refractory metal-oxide-doped titanate nanotubes (TNTs) using a hydrothermal process and investigated their photocatalytic activity under ultraviolet and visible light irradiation. Refractory metal doping ions such as Mo6+ and W6+ can be supplied from molybdenum oxide and tungsten oxide sources. The refractory metal-doped TNT may act as an electron trap or enhance the adsorption capacity, which increases the number of active sites and promotes separation efficiency.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1244
Author(s):  
Tamsin E. Whitfield ◽  
George J. Wise ◽  
Ed J. Pickering ◽  
Howard J. Stone ◽  
Nicholas G. Jones

Refractory metal high entropy superalloys (RSAs) have been heralded as potential new high temperature structural materials. They have nanoscale cuboidal bcc+B2 microstructures that are thought to form on quenching through a spinodal decomposition process driven by the Ta-Zr or Nb-Zr miscibility gaps, followed by ordering of one of the bcc phases. However, it is difficult to isolate the role of different elemental interactions within compositionally complex RSAs. Therefore, in this work the microstructures produced by the Nb-Zr miscibility gap within the compositionally simpler Ti-Nb-Zr constituent system were investigated. A systematic series of alloys with compositions of Ti5NbxZr95−x (x = 25–85 at.%) was studied following quenching from solution heat treatment and long duration thermal exposures at 1000, 900 and 700 °C for 1000 h. During exposures at 900 °C and above the alloys resided in a single bcc phase field. At 700 °C, alloys with 40–75 at.% Nb resided within a three phase bcc + bcc + hcp phase field and a large misfit, 4.7–5%, was present between the two bcc phases. Evidence of nanoscale cuboidal microstructures was not observed, even in slow cooled samples. Whilst it was not possible to conclusively determine whether a spinodal decomposition occurs within this ternary system, these insights suggest that Nb-Zr interactions may not play a significant role in the formation of the nanoscale cuboidal RSA microstructures during cooling.


Sign in / Sign up

Export Citation Format

Share Document