Kinetic condensation of metals in the early solar system: Unveiling the cooling history of solar nebula by refractory metal nuggets

Icarus ◽  
2020 ◽  
Vol 350 ◽  
pp. 113851
Author(s):  
Mingen Pan
Elements ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 231-236 ◽  
Author(s):  
Charles K. Shearer ◽  
Steven B. Simon

The behavior of boron during the early evolution of the Solar System provides the foundation for how boron reservoirs become established in terrestrial planets. The abundance of boron in the Sun is depleted relative to adjacent light elements, a result of thermal nuclear reactions that destroy boron atoms. Extant boron was primarily generated by spallation reactions. In the initial materials condensing from the solar nebula, boron was predominantly incorporated into plagioclase. Boron abundances in the terrestrial planets exhibit variability, as illustrated by B/Be. During planetary formation and differentiation, boron is redistributed by fluids at low temperature and during crystallization of magma oceans at high temperature.


Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


1987 ◽  
Vol 120 ◽  
pp. 565-575
Author(s):  
Tetsuo Yamamoto

The chemical composition of the ice and grains in a cometary nucleus is discussed by applying the condensation theory. The equilibrium condensation theory of a gas having the elemental abundances in the solar system is briefly reviewed. The composition of solids predicted by the equilibrium condensation theory is compared with that of the ice and grains in the nucleus; the latter is inferred from the observations of cometary molecules and grains. On the basis of the results of this comparison, a scenario for the formation history of comets is proposed, and discussion is given on the temperature and region of the primordial solar nebula where comets formed.


Science ◽  
2014 ◽  
Vol 345 (6197) ◽  
pp. 650-653 ◽  
Author(s):  
Maria Lugaro ◽  
Alexander Heger ◽  
Dean Osrin ◽  
Stephane Goriely ◽  
Kai Zuber ◽  
...  

Among the short-lived radioactive nuclei inferred to be present in the early solar system via meteoritic analyses, there are several heavier than iron whose stellar origin has been poorly understood. In particular, the abundances inferred for 182Hf (half-life = 8.9 million years) and 129I (half-life = 15.7 million years) are in disagreement with each other if both nuclei are produced by the rapid neutron-capture process. Here, we demonstrate that contrary to previous assumption, the slow neutron-capture process in asymptotic giant branch stars produces 182Hf. This has allowed us to date the last rapid and slow neutron-capture events that contaminated the solar system material at ∼100 million years and ∼30 million years, respectively, before the formation of the Sun.


1979 ◽  
Vol 17 (1) ◽  
pp. 73-102
Author(s):  
N.B. Richter

Comets, minor planets and meteorites provide us with valuable information about the past history of the solar system. They belong to the most primitive samples of the primordial solar nebula. Over the past years, we can record a considerable increase of interest in these bodies.


1974 ◽  
Vol 3 ◽  
pp. 483-485
Author(s):  
T. Gold

Satellites are a common feature in the solar system, and all planets on which satellite orbits would be stable possess them. (For Mercury the solar perturbation is too large, and the retrograde spin of Venus would cause satellites to spiral in to the planet through tidal friction.) An explanation of the formation of satellites must hence be one which makes the phenomenon exceedingly probable at some stage in the solar system formation processes, and very improbable processes like a capture cannot be the answer in most cases.Small particulate matter must have been very abundant in the early solar nebula. Such particulate matter must have existed both from the first condensation of the low vapor pressure components of the gas in the first round, and it must also have been composed of material scattered from impacts after some major bodies had begun to form, frequently finding themselves no doubt on collision orbits.


1980 ◽  
Vol 35 (2) ◽  
pp. 145-170 ◽  
Author(s):  
J. Jordan ◽  
T. Kirsten ◽  
H. Richter

AbstractWe report I-Xe ages and other relevant xenon data for seven ordinary chondrites from H and L-groups of petrologic types 4-6, which were selected on the basis of minimum weathering and shock effects. Nevertheless, no chronological order with respect to the I-Xe ages exists among the different petrologic types. We demonstrate, however, that the degree to which the 1-Xe record is preserved in these chondrites, but not necessarily the age, is dependent on the thermal metamorphic history. In order to explain the lack of chronological order among the chondrites, spatiotemporal variations in the condensation-accretion process or inhomogeneities in the isotopic composition of iodine in the solar nebula is required.


2021 ◽  
Vol 7 (1) ◽  
pp. eaba5967
Author(s):  
Benjamin P. Weiss ◽  
Xue-Ning Bai ◽  
Roger R. Fu

We review recent advances in our understanding of magnetism in the solar nebula and protoplanetary disks (PPDs). We discuss the implications of theory, meteorite measurements, and astronomical observations for planetary formation and nebular evolution. Paleomagnetic measurements indicate the presence of fields of 0.54 ± 0.21 G at ~1 to 3 astronomical units (AU) from the Sun and ≳0.06 G at 3 to 7 AU until >1.22 and >2.51 million years (Ma) after solar system formation, respectively. These intensities are consistent with those predicted to enable typical astronomically observed protostellar accretion rates of ~10−8M⊙year−1, suggesting that magnetism played a central role in mass transport in PPDs. Paleomagnetic studies also indicate fields <0.006 G and <0.003 G in the inner and outer solar system by 3.94 and 4.89 Ma, respectively, consistent with the nebular gas having dispersed by this time. This is similar to the observed lifetimes of extrasolar protoplanetary disks.


Theories that require the co-genetic formation of the Sun and planets have difficulty in explaining the slow rotation of the Sun. An analysis is made of various mechanisms for slowing down the core of an evolving nebula. Two of these involve a high magnetic dipole moment for the early Sun. The first envisages magnetic linkage to an external plasma but requires a dipole moment 10 6 times that of the present Sun. The other is based on the co-rotation of m atter leaving the Sun during a T Tauri stage, and requires a dipole moment 10 4 times the present value. A mechanical process for transferring angular momentum outward involving dissipation in a solar-nebula disc is incapable of giving what is required. Two processes of star formation in a turbulent cloud are discussed. Both are capable of giving a slowly rotating Sun. Various models for producing planets are examined in relation to the spin they would produce. Planets formed from floccules would be spinning quickly but could evolve in such a way as to give observed spins for giant planets and also satellite families. Accretion models are very sensitive to assumptions, and parameters and can be adjusted to explain almost any observation. Protoplanets formed in elliptical orbits would acquire spin angular momentum through solar tidal action and would evolve to give reasonable spin rates and regular satellite families. The various tilts of their spin axes could be explained by interactions between protoplanets in the early Solar System.


Sign in / Sign up

Export Citation Format

Share Document