magma oceans
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 29)

H-INDEX

17
(FIVE YEARS 4)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1334
Author(s):  
Liang Sun ◽  
Huan Zhang ◽  
Zanyang Guan ◽  
Weiming Yang ◽  
Youjun Zhang ◽  
...  

The physical properties of basic minerals such as magnesium silicates, oxides, and silica at extreme conditions, up to 1000 s of GPa, are crucial to understand the behaviors of magma oceans and melting in Super-Earths discovered to data. Their sound velocity at the conditions relevant to the Super-Earth’s mantle is a key parameter for melting process in determining the physical and chemical evolution of planetary interiors. In this article, we used laser indirectly driven shock compression for quartz to document the sound velocity of quartz at pressures of 270 GPa to 870 GPa during lateral unloadings in a high-power laser facility in China. These measurements demonstrate and improve the technique proposed by Li et al. [PRL 120, 215703 (2018)] to determine the sound velocity. The results compare favorably to the SESAME EoS table and previous data. The Grüneisen parameter at extreme conditions was also calculated from sound velocity data. The data presented in our experiment also provide new information on sound velocity to support the dissociation and metallization for liquid quartz at extreme conditions.


2021 ◽  
Vol 922 (1) ◽  
pp. L4
Author(s):  
Caroline Dorn ◽  
Tim Lichtenberg

Abstract We demonstrate that the deep volatile storage capacity of magma oceans has significant implications for the bulk composition, interior, and climate state inferred from exoplanet mass and radius data. Experimental petrology provides the fundamental properties of the ability of water and melt to mix. So far, these data have been largely neglected for exoplanet mass–radius modeling. Here we present an advanced interior model for water-rich rocky exoplanets. The new model allows us to test the effects of rock melting and the redistribution of water between magma ocean and atmosphere on calculated planet radii. Models with and without rock melting and water partitioning lead to deviations in planet radius of up to 16% for a fixed bulk composition and planet mass. This is within the current accuracy limits for individual systems and statistically testable on a population level. Unrecognized mantle melting and volatile redistribution in retrievals may thus underestimate the inferred planetary bulk water content by up to 1 order of magnitude.


2021 ◽  
Vol 929 ◽  
Author(s):  
Cyril Sturtz ◽  
Édouard Kaminski ◽  
Angela Limare ◽  
Stephen Tait

The dynamics of suspensions plays a crucial role in the evolution of geophysical systems such as lava lakes, magma chambers and magma oceans. During their cooling and solidification, these magmatic bodies involve convective viscous fluids and dispersed solid crystals that can form either a cumulate or a floating lid by sedimentation. We study such systems based on internal heating convection experiments in high Prandtl fluids bearing plastic beads. We aim to determine the conditions required to produce a floating lid or a sedimented deposit. We show that, although the sign of particles buoyancy is the key parameter, it is not sufficient to predict the particles fate. To complement the model we introduce the Shields formalism and couple it with scaling laws describing convection. We propose a generalized Shields number that enables a self-consistent description of the fate of particles in the system, especially the possibility to segregate from the convective bulk. We provide a quantification of the partition of the mass of particles in the different potential reservoirs (bulk suspension, floating lid, settled cumulate) through reconciling the suspension stability framework with the Shields formalism. We illustrate the geophysical implications of the model by revisiting the problem of the stability of flotation crusts on solidifying rocky bodies.


2021 ◽  
Author(s):  
Christiaan Van Buchem ◽  
Yamila Miguel ◽  
Wim Van Westrenen

<p>Hot rocky exoplanets present us with the unique opportunity to give us insights into their interiors through the characterization of their atmospheres. With the upcoming launch of the JWST and ARIEL ushering in a new era of exoplanet observations, this topic is becoming more relevant than ever. </p> <p>A crucial element in this work is the accurate modeling of the interaction between planetary atmospheres and their magma oceans. The key question here being: What is the atmospheric composition of a hot rocky exoplanet for a given magma ocean composition? One pressing issue one must face when answering this question is the inclusion of volatile species (such as H2, H2O, CO2, etc.). Currently, hot rocky exoplanets are often assumed to be entirely depleted of volatile species, or simplified models are applied in which but a few species in both the melt and the atmosphere are taken into account.</p> <p>In this presentation we will show our ongoing work on including volatiles species in the modeling of magma ocean-atmosphere interactions on hot rocky exoplanets. The successful development of this method and subsequent comparisons to observations would allow us to start characterising rocky exoplanet compositions which could lead to new insights for formation models. Furthermore, it would also allow us to model the effects of transient magma oceans though to be present on young earth analogs. Deepening our understanding of how such processes influence the conditions present during later evolutionary stages could give us new insights in the evolution of the earth and the conditions necessary to sustain life.</p>


2021 ◽  
Author(s):  
Randolph Röhlen ◽  
Kai Wünnemann ◽  
Laetitia Allibert ◽  
Lukas Manske ◽  
Christian Maas ◽  
...  

2021 ◽  
Author(s):  
Tim Lichtenberg ◽  
Robert J. Graham ◽  
Ryan Boukrouche ◽  
Raymond T. Pierrehumbert

<p>The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution. However, these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. In order to advance the potential synergies between exoplanet observations and inferrences on the earliest history and climate state of the solar system terrestial planets, I will present a novel numerical framework that links an evolutionary, vertically-resolved model of the planetary silicate mantle with a radiative-convective model of the atmosphere. Numerical simulations using this framework illustrate the sensitive dependence of mantle crystallization and atmosphere build-up on volatile speciation and predict variations in atmospheric spectra with planet composition that may be detectable with future observations of exoplanets. Magma ocean thermal sequences fall into three general classes of primary atmospheric volatile with increasing cooling timescale: CO, N<sub>2</sub>, and O<sub>2</sub> with minimal effect on heat flux, H<sub>2</sub>O, CO<sub>2</sub>, and CH<sub>4</sub> with intermediate influence, and H<sub>2</sub> with several orders of magnitude increase in solidification time and atmosphere vertical stratification. In addition to these time-resolved results, I will present a novel formulation and application of a multi-species moist-adiabat for condensable-rich magma ocean and archean earth analog atmospheres, and outline how the cooling of such atmospheres can lead to exotic climate states that provide testable predictions for terrestrial exoplanets.</p>


2021 ◽  
Author(s):  
Tim Lichtenberg

<div class="page" title="Page 1"> <div class="section"> <div class="layoutArea"> <div class="column"> <p>Internal redox reactions may irreversibly alter the mantle composition and volatile inventory of terrestrial and super-Earth exoplanets and affect the prospects for atmospheric observations. The global efficacy of these mechanisms, however, hinges on the transfer of reduced iron from the molten silicate mantle to the metal core. Scaling analysis indicates that turbulent diffusion in the internal magma oceans of sub- Neptunes can kinetically entrain liquid iron droplets and quench core formation. This suggests that the chemical equilibration between core, mantle, and atmosphere may be energetically limited by convective overturn in the magma flow. Hence, molten super-Earths possibly retain a compositional memory of their accretion path. Redox control by magma ocean circulation is positively correlated with planetary heat flow, internal gravity, and planet size. The presence and speciation of remanent atmospheres, surface mineralogy, and core mass fraction of atmosphere-stripped exoplanets may thus constrain magma ocean dynamics.</p> </div> </div> </div> </div>


Author(s):  
Hideharu Kuwahara ◽  
Shoichi Itoh ◽  
Akimasa Suzumura ◽  
Ryoichi Nakada ◽  
Tetsuo Irifune
Keyword(s):  

2021 ◽  
Author(s):  
Razvan Caracas ◽  
Sarah T. Stewart

<h3>Impacts are highly energetic phenomena. They abound in the early stages of formation of the solar system, when they actively participated to the formation of large bodies in the protoplanetary disk. Later on, when planetesimals and embryo planets formed, impacts merged smaller bodies into the large planets that we know today. Giant impacts dominated the last phase of the planetary accretion, with some of these impacts leaving traces observable even today (planets tilts, moon, missing mantle, etc). The Earth was not spared, and its most cataclysmic event also contributed to the formation of the Moon.</h3><h3>Here we present the theoretical tools used to explore the thermodynamics of the formation of the protolunar disk and the subsequent condensation of this disk. We show how ab initio-based molecular dynamics simulations contribute to the determination of the stability field of melts, to the equilibrium between melts and vapor and the positioning of the critical points. Together all this information helps building the liquid-vapor stability dome. Next we investigate the supercritical regime, typical of the post-impact state. We take a focused look to the transport properties, the formation of the first atmosphere, and compare the properties of the liquid state typical of magma oceans, to the super-critical state, typical of protolunar disks.</h3><h3>We apply this theoretical approach on pyrolite melts, as best approximants for the bulk silicate Earth. These simulations help us retrace the thermodynamic state of the protolunar disk and infer possible condensation paths for both the Earth and the moon.</h3><h3> </h3><p>RC acknowledges support from the European Research Council under EU Horizon 2020 research and innovation program (grant agreement 681818 – IMPACT) and access to supercomputing facilities via the eDARI gen6368 grants, the PRACE RA4947 grant, and the Uninet2 NN9697K grant. STS was supported by NASA grants NNX15AH54G and 80NSSC18K0828; DOE-NNSA grants DE-NA0003842 and DE-NA0003904.</p>


2021 ◽  
Author(s):  
Adrien Morison ◽  
Stephane Labrosse ◽  
Daniela Bolrao ◽  
Antoine Rozel ◽  
Maxim Ballmer ◽  
...  

<p>The light plagioclase-enriched crust as well as the KREEP layer at the surface of the Moon are believed to be remnants of the bottom-up crystallization of a global Lunar Magma Ocean.  In such a setup, the primitive Lunar solid mantle is coated by a liquid magma ocean of similar composition. We propose here to study the dynamic and evolution of the primitive Lunar solid mantle, accounting for the presence of the Lunar Magma Ocean.</p><p>We solve numerically the equations of solid-state convection in the solid part of the mantle.  This model is coupled to 1D models of crystallization of the magma oceans to self-consistently compute the thickening of the solid part as heat is evacuated from the mantle.  We take into account fractional crystallization at the freezing front.</p><p>Moreover, the boundaries between the solid and the magma oceans are phase-change interfaces.  Convecting matter in the solid arriving near the boundary or getting away from it forms a topography which can be erased by melting or freezing.  Hence, provided the melting and freezing occurs rapidly compared to the time needed to build the topographies by viscous forces, dynamical exchange of matter can occur between the solid mantle and the magma oceans.  We take this effect into account in our model with a boundary condition applied to the solid.</p><p>We find that the boundary condition allowing matter to cross the interfaces between the solid and the magma oceans greatly affects the convection patterns in the solid as well as its heat flux.  Larger-scale convection patterns are selected compared to the classical case with non-penetrative boundary conditions; and the heat transfert in the solid is more efficient with these boundary conditions.  This affects the long term thermal evolution of the mantle as well as the shape of chemical heterogeneities that can be built by fractional crystallization of magma oceans.</p>


Sign in / Sign up

Export Citation Format

Share Document