scholarly journals Dynamical Evolution of the Mass Function of the Globular Cluster System from Fokker-Planck Calculations: Preliminary Results

2006 ◽  
Vol 2 (S235) ◽  
pp. 110-110
Author(s):  
Jihye Shin ◽  
Sungsoo S. Kim

AbstractUsing anisotropic Fokker-Planck models, we calculate the evolution of mass and luminosity functions of the Galactic globular cluster system. Our models include two-body relaxation, binary heating, tidal shocks, dynamical friction, and stellar evolution. We perform Fokker-Planck simulations for a large number of virtual globular clusters and synthesize these results to study the relation between the initial and present GCMFs.

2007 ◽  
Vol 3 (S246) ◽  
pp. 394-402
Author(s):  
Stephen E. Zepf

AbstractThis paper reviews some of the observational properties of globular cluster systems, with a particular focus on those that constrain and inform models of the formation and dynamical evolution of globular cluster systems. I first discuss the observational determination of the globular cluster luminosity and mass function. I show results from new very deep HST data on the M87 globular cluster system, and discuss how these constrain models of evaporation and the dynamical evolution of globular clusters. The second subject of this review is the question of how to account for the observed constancy of the globular cluster mass function with distance from the center of the host galaxy. The problem is that a radial trend is expected for isotropic cluster orbits, and while the orbits are observed to be roughly isotropic, no radial trend in the globular cluster system is observed. I review three extant proposals to account for this, and discuss observations and calculations that might determine which of these is most correct. The final subject is the origin of the very weak mass-radius relation observed for globular clusters. I discuss how this strongly constrains how globular clusters form and evolve. I also note that the only viable current proposal to account for the observed weak mass-radius relation naturally effects the globular cluster mass function, and that these two problems may be closely related.


2007 ◽  
Vol 3 (S246) ◽  
pp. 433-434
Author(s):  
Jihye Shin ◽  
Sungsoo S. Kim ◽  
Koji Takahashi

AbstractUsing the most advanced anisotropic (2D) Fokker-Planck (FP) models, we calculate the evolution of the mass functions of the Galactic globular cluster system (GCMF). Our models include two-body relaxation, binary heating, tidal shocks, dynamical friction, stellar evolution, and realistic cluster orbits. We perform 2D-FP simulations for a large number of virtual globular clusters and synthesize these results to study the relation between the initial and present GCMFs. We found two probable IGCMFs that eventually evolve into the Milky Way GCMF : truncated power-law, and log-normal model with higher initial low mass limit and peak mass than the earlier studies.


2019 ◽  
Vol 14 (S351) ◽  
pp. 442-446
Author(s):  
Alessandra Mastrobuono-Battisti ◽  
Sergey Khoperskov ◽  
Paola Di Matteo ◽  
Misha Haywood

AbstractThe Galactic globular cluster system went and is still going through dynamical processes that require to be explored in detail. Here we illustrate how primordial massive globular clusters born in the Milky Way’s disc evolved by stripping material from each other or even merging very early during their lives. These processes might explain the puzzling presence of star-by-star spreads in iron content observed in massive globular clusters and should be taken into account when studying globular cluster stellar populations. In this context, we show how the direct comparison between the predictions provided by our direct N-body simulations and observations can shed light on the origin and chemo-dynamical evolution of globular clusters.


1996 ◽  
Vol 174 ◽  
pp. 401-402
Author(s):  
E. Vesperini

Recent surveys of the observational properties of galactic globular clusters have shown the existence of interesting correlations and trends between structural parameters and between structural parameters and location inside the Galaxy (Chernoff & Djorgovski 1989, Djorgovski & Meylan 1994). The origin of most of these correlations is not clear yet and it is not clear to what extent they reflect the primordial conditions or the result of evolution. We have carried out a set of simulations following the evolution of the properties of a globular cluster system (mass function, spatial distribution, correlations between structural parameters) starting from given initial conditions. The evolution of each individual cluster has been followed by the same method applied by Chernoff et al. (1986) and Chernoff & Shapiro (1987). The effects of internal relaxation, disk shocking and dynamical friction have been considered. The main goal of the analysis is that of establishing the role of initial conditions and evolutionary processes in determining the present observational properties.


2005 ◽  
Vol 13 ◽  
pp. 193-194
Author(s):  
E. Vesperini

AbstractI present the results of a number of simulations of the dynamical evolution of globular cluster systems (GCS) in elliptical galaxies including the effects of two-body relaxation, dynamical friction, stellar evolution and the effects of the tidal field of the host galaxy. The results of detailed models for the evolution of the M87 GCS are also presented. A significant number of clusters are disrupted by evolutionary processes and the properties of many of the clusters which survive are effected by dynamical evolution. In spite of large differences in the efficiency of evolutionary processes in different galaxies, the final galaxy-to-galaxy variation of the GCS mean mass and its radial variation within individual galaxies in my simulations are small and consistent with observations. The effects of dissolution of low-concentration clusters due to mass loss through stellar evolution are also discussed and are shown to play an important role in the evolution of a power-law GCS mass function (GCMF), similar to that observed in young cluster systems in merging galaxies, towards a final GCMF with properties consistent with observations.


1996 ◽  
Vol 174 ◽  
pp. 313-318 ◽  
Author(s):  
Vladimir Surdin

Some observable relationships between globular cluster parameters appear as a result of long time dynamical evolution of the cluster system. These relationships are inapplicable to the studies of the globular clusters origin.


1996 ◽  
Vol 174 ◽  
pp. 393-394
Author(s):  
Myung Gyoon Lee ◽  
Eunhyeuk Kim ◽  
Doug Geisler

NGC 4472, the brightest elliptical galaxy in the Virgo cluster, has a rich globular cluster system. We present a study of the metallicity and luminosity functions of a large number of globular clusters in NGC 4472. Deep Washington CT1 photometry of a wide (16′ × 16′) field of NGC 4472 was obtained using Tek 2048 × 2048 CCD at the KPNO 4m telescope.


1996 ◽  
Vol 174 ◽  
pp. 375-376
Author(s):  
P.-Y. Longaretti ◽  
C. Lagoute

We have computed simplified globular cluster evolutionary tracks which take into account the effects of internal relaxation, of the cluster rotation, of the galactic tidal field, and, in a cruder way, of stellar evolution and of gravitational shocking. The objectives are first to quantify the influence of rotation in the dynamical evolution of globular clusters; and second, to investigate the evolution of globular cluster angular momentum and flattening (Lagoute and Longaretti 1995a, Longaretti and Lagoute 1995b,c).


1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document