merging galaxies
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 18)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 162 (6) ◽  
pp. 276
Author(s):  
Yang-Wei Zhang ◽  
Yang Huang ◽  
Jin-Ming Bai ◽  
Xiao-Wei Liu ◽  
Jian-guo Wang ◽  
...  

Abstract As the third installment in a series systematically searching dual active galactic nuclei (AGN) among merging galaxies, we present the results of 20 dual AGNs found by using the SDSS fiber spectra. To reduce the flux contamination from both the fiber aperture and seeing effects, the angular separation of two cores in our merging galaxy pairs sample is restricted at least larger than 3″. By careful analysis of the emission lines, 20 dual AGNs are identified from 61 merging galaxies with their two cores both observed by the SDSS spectroscopic surveys. 15 of them are identified for the first time. The identification efficiency is about 32.79% (20/61), comparable to our former results (16 dual AGNs identified from 41 merging galaxies) based on the long-slit spectroscopy. Interestingly, two of the 20 dual AGNs show two prominent cores in radio images and their radio powers show they as the radio-excess AGNs. So far, 31 dual AGNs are found by our project and this is the current largest dual AGN sample, ever constructed with a consistent approach. This sample, together with more candidates from ongoing observations, is of vital importance to study the AGN physics and the coevolution between the supermassive black holes and their host galaxies.


2021 ◽  
Vol 923 (1) ◽  
pp. 36
Author(s):  
Aaron Stemo ◽  
Julia M. Comerford ◽  
R. Scott Barrows ◽  
Daniel Stern ◽  
Roberto J. Assef ◽  
...  

Abstract During galaxy mergers, gas and dust are driven toward the centers of merging galaxies, triggering enhanced star formation and supermassive black hole (SMBH) growth. Theory predicts that this heightened activity peaks at SMBH separations <20 kpc; if sufficient material accretes onto one or both of the SMBHs for them to become observable as active galactic nuclei (AGNs) during this phase, they are known as offset and dual AGNs, respectively. To better study these systems, we have built the ACS-AGN Merger Catalog, a large catalog (N = 204) of uniformly selected offset and dual AGN observed by the Hubble Space Telescope at 0.2 < z < 2.5 with separations <20 kpc. Using this catalog, we answer many questions regarding SMBH−galaxy coevolution during mergers. First, we confirm predictions that the AGN fraction peaks at SMBH pair separations <10 kpc; specifically, we find that the fraction increases significantly at pair separations of <4 kpc. Second, we find that AGNs in mergers are preferentially found in major mergers and that the fraction of AGNs found in mergers follows a logarithmic relation, decreasing as merger mass ratio increases. Third, we do not find that mergers (nor the major or minor merger subpopulations) trigger the most luminous AGNs. Finally, we find that nuclear column density, AGN luminosity, and host galaxy star formation rate have no dependence on SMBH pair separation or merger mass ratio in these systems, nor do the distributions of these values differ significantly from that of the overall AGN population.


2021 ◽  
Vol 162 (6) ◽  
pp. 289
Author(s):  
Yang-Wei Zhang ◽  
Yang Huang ◽  
Jin-Ming Bai ◽  
Xiao-Wei Liu ◽  
Jian-guo Wang ◽  
...  

Abstract Building a large sample of kiloparsec (kpc)-scale dual active galactic nuclei (AGNs) among merging galaxies is of vital importance to understand the coevolution between host galaxies and their central super massive black holes (SMBHs). Doing so, with just such a sample, we have developed an innovative method of systematically searching and identifying dual AGNs among kpc-scale merging galaxies and selected 222 candidates at redshifts ≤ 0.25. All the selected candidates have radio detection in the Faint Images of the Radio Sky at Twenty Centimeters survey and at least one of two cores previously revealed as AGN spectroscopically. We report the first results from a systematic search for dual AGNs in merging galaxies (ASTRO-DARING), which consist of spatially resolved long-slit spectroscopic observations of 41 targets selected from our merging galaxies sample carried out between 2014 November and 2017 February, using the Yunnan Faint Object Spectrograph and Camera mounted on the 2.4 meter telescope in Lijiang of Yunnan Observatories. Of these, 16 are likely dual AGNs, and 15 are newly identified. The efficiency of ASTRO-DARING is thus nearly 40%. With this method, we plan to build the first even sample of more than 50 dual AGNs constructed using a consistent approach. Further analysis of the dual AGN sample shall provide vital clues for understanding the coevolution of galaxies and SMBHs.


2021 ◽  
Vol 909 (2) ◽  
pp. 124
Author(s):  
Andrea Silva ◽  
Danilo Marchesini ◽  
John D. Silverman ◽  
Nicholas Martis ◽  
Daisuke Iono ◽  
...  

2021 ◽  
Vol 502 (4) ◽  
pp. 4794-4814
Author(s):  
Imran Tariq Nasim ◽  
Alessia Gualandris ◽  
Justin I Read ◽  
Fabio Antonini ◽  
Walter Dehnen ◽  
...  

ABSTRACT Massive elliptical galaxies are typically observed to have central cores in their projected radial light profiles. Such cores have long been thought to form through ‘binary scouring’ as supermassive black holes (SMBHs), brought in through mergers, form a hard binary and eject stars from the galactic centre. However, the most massive cores, like the $\sim 3{\, \mathrm{kpc}}$ core in A2261-BCG, remain challenging to explain in this way. In this paper, we run a suite of dry galaxy merger simulations to explore three different scenarios for central core formation in massive elliptical galaxies: ‘binary scouring’, ‘tidal deposition’, and ‘gravitational wave (GW) induced recoil’. Using the griffin code, we self-consistently model the stars, dark matter, and SMBHs in our merging galaxies, following the SMBH dynamics through to the formation of a hard binary. We find that we can only explain the large surface brightness core of A2261-BCG with a combination of a major merger that produces a small $\sim 1{\, \mathrm{kpc}}$ core through binary scouring, followed by the subsequent GW recoil of its SMBH that acts to grow the core size. Key predictions of this scenario are an offset SMBH surrounded by a compact cluster of bound stars and a non-divergent central density profile. We show that the bright ‘knots’ observed in the core region of A2261-BCG are best explained as stalled perturbers resulting from minor mergers, though the brightest may also represent ejected SMBHs surrounded by a stellar cloak of bound stars.


2020 ◽  
Vol 501 (1) ◽  
pp. 14-23
Author(s):  
Song-lin Li ◽  
Yong Shi ◽  
Dmitry Bizyaev ◽  
Christopher Duckworth ◽  
Ren-bin Yan ◽  
...  

ABSTRACT Galaxy mergers and interactions are expected to play a significant role leading to offsets between gas and stellar motions in galaxies. Herein, we cross-match galaxies in Mapping Nearby Galaxies at Apache Point Observatory MPL-8 with the Dark Energy Spectroscopic Instrument Legacy Surveys and identify 311 merging galaxies that have reliable measurements of ΔPA, the difference between the stellar and gas kinematic position angles, to investigate the impacts of merging on gas–stellar rotation misalignments. We find that the merging fractions of misaligned galaxies (30$^\circ \, \leqslant \, \Delta$PA &lt; 150○) are higher than those of co-rotators (ΔPA &lt; 30○) in both quiescent and star-forming galaxies. This result suggests that merging is one process to produce kinematic misalignments. The merging fraction of counter-rotators (ΔPA ≥ 150○) is lower than that of misaligned galaxies in both quiescent and star-forming galaxies, while in the latter it is likely even lower than that of co-rotators. The orbital angular momentum transfer to the spins of stars and gas during merging and the tidal feature disappearance can lead to small merging fractions in counter-rotators. Numerous new stars that inherit angular momentum from gas after merging can further lower the merging fraction of star-forming counter-rotators.


2020 ◽  
Vol 499 (3) ◽  
pp. 3399-3409
Author(s):  
Jian Ren ◽  
X Z Zheng ◽  
David Valls-Gabaud ◽  
Pierre-Alain Duc ◽  
Eric F Bell ◽  
...  

ABSTRACT We investigate the properties of long tidal tails using the largest to date sample of 461 merging galaxies with $\log (M_\ast /\rm M_\odot)\ge 9.5$ within 0.2 ≤ z ≤ 1 from the COSMOS survey in combination with Hubble Space Telescope imaging data. Long tidal tails can be briefly divided into three shape types: straight (41 per cent), curved (47 per cent), and plume (12 per cent). Their host galaxies are mostly at late stages of merging, although 31 per cent are galaxy pairs with projected separations d &gt; 20 kpc. The high formation rate of straight tidal tails needs to be understood as the projection of curved tidal tails accounts for only a small fraction of the straight tails. We identify 165 tidal dwarf galaxies (TDGs), yielding a TDG production rate of 0.36 per merger. Combined with a galaxy merger fraction and a TDG survival rate from the literature, we estimate that ∼5 per cent of local dwarf galaxies (DGs) are of tidal origin, suggesting the tidal formation is not an important formation channel for the DGs. About half of TDGs are located at the tip of their host tails. These TDGs have stellar masses in the range of $7.5\le \log (M_\ast /\rm M_\odot)\le 9.5$ and appear compact with half-light radii following the M*–Re relation of low-mass elliptical galaxies. However, their surface brightness profiles are generally flatter than those of local disc galaxies. Only 10 out of 165 TDGs have effective radii larger than 1.5 kpc and would qualify as unusually bright ultradiffuse galaxies.


2020 ◽  
Author(s):  
A. Ciprijanovic ◽  
G. Snyder ◽  
B. Nord ◽  
J. Peek

2020 ◽  
Vol 499 (2) ◽  
pp. 2575-2586
Author(s):  
Amr A El-Zant ◽  
Zacharias Roupas ◽  
Joseph Silk

ABSTRACT Fuzzy dark matter (FDM) consisting of ultralight axions has been invoked to alleviate galactic-scale problems in the cold dark matter scenario. FDM fluctuations, created via the superposition of waves, can impact the motion of a central supermassive black hole (SMBH) immersed in an FDM halo. The SMBH will undergo a random walk, induced by FDM fluctuations, that can result in its ejection from the central region. This effect is strongest in dwarf galaxies, accounting for wandering SMBHs and the low detection rate of active galactic nuclei in dwarf spheroidal galaxies. In addition, a lower bound on the allowed axion masses is inferred both for Sagitarius A* and heavier SMBH; to avoid ejection from the galactic centres, axion masses of the order of 10−22 eV or lighter are excluded. Stronger limits are inferred for merging galaxies. We find that the event rate of SMBH mergers in FDM haloes and the associated SMBH growth rates can be reduced by at least an order of magnitude.


2020 ◽  
Vol 497 (4) ◽  
pp. 5292-5308 ◽  
Author(s):  
Paul Torrey ◽  
Philip F Hopkins ◽  
Claude-André Faucher-Giguère ◽  
Daniel Anglés-Alcázar ◽  
Eliot Quataert ◽  
...  

ABSTRACT Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disc galaxies. Stellar feedback is modelled using the Feedback In Realistic Environments (fire) physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strong function of the wind kinetic power and momentum. Low- and moderate-luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳20–30 Myr, the inner ∼1–10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor of ∼2–3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker discs and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations.


Sign in / Sign up

Export Citation Format

Share Document