scholarly journals The Mopra DQS survey of the G333 region

2006 ◽  
Vol 2 (S237) ◽  
pp. 404-404
Author(s):  
M. R. Cunningham ◽  
I. Bains ◽  
N. Lo ◽  
T. Wong ◽  
M. G. Burton ◽  
...  

Any successful model of star formation must be able to explain the low star forming efficiency of molecular clouds in our Galaxy. If the collapse of gas is regulated only by gravity, then the star formation rate should be orders of magnitude larger than the 1 M per year within our galaxy. The standard model invokes magnetic fields to slow down the rate of collapse, but does not explain star formation in cluster mode, or the lack of observed variations in the chemistry of molecular clouds if they are long-lived entities.

2004 ◽  
Vol 221 ◽  
pp. 201-212
Author(s):  
Lee Hartmann

Protostellar core formation is probably much more dynamic, and magnetic fields are probably much less important, than has been previously assumed in the standard model of low-mass star formation. This revised picture has important consequences: it is easier to understand the observed rapidity of star formation in molecular clouds; cores are more likely to have structures favoring high infall rates at early times, helping to explain the differences between Class 0 and Class I protostars; and core structure and asymmetry will strongly favor post-collapse fragmentation into binary and multiple stellar systems.


2015 ◽  
Vol 10 (S314) ◽  
pp. 8-15
Author(s):  
Charles J. Lada

AbstractStudies of molecular clouds and young stars near the sun have provided invaluable insights into the process of star formation. Indeed, much of our physical understanding of this topic has been derived from such studies. Perhaps the two most fundamental problems confronting star formation research today are: 1) determining the origin of stellar mass and 2) deciphering the nature of the physical processes that control the star formation rate in molecular gas. As I will briefly outline here, observations and studies of local star forming regions are making particularly significant contributions toward the solution of both these important problems.


2020 ◽  
Vol 634 ◽  
pp. A26 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
J. M. Vílchez ◽  
F. Sakhibov ◽  
...  

We derive the photometric, kinematic, and abundance characteristics of 18 star-forming MaNGA galaxies with fairly regular velocity fields and surface brightness distributions and with a large offset between the measured position angles of the major kinematic and photometric axes, ΔPA ≳ 20°. The aim is to examine if there is any other distinctive characteristic common to these galaxies. We found morphological signs of interaction in some (in 11 out of 18) but not in all galaxies. The observed velocity fields show a large variety; the maps of the isovelocities vary from an hourglass-like appearance to a set of straight lines. The position angles of the major kinematic axes of the stellar and gas rotations are close to each other. The values of the central oxygen abundance, radial abundance gradient, and star formation rate are distributed within the intervals defined by galaxies with small (no) ΔPA of similar mass. Thus, we do not find any specific characteristic common to all galaxies with large ΔPA. Instead, the properties of these galaxies are similar to those of galaxies with small (no) ΔPA. This suggests that either the reason responsible for the large ΔPA does not influence other characteristics or the galaxies with large ΔPA do not share a common origin, they can, instead, originate through different channels.


2020 ◽  
Vol 500 (1) ◽  
pp. 40-53
Author(s):  
Fernanda Roman-Oliveira ◽  
Ana L Chies-Santos ◽  
Fabricio Ferrari ◽  
Geferson Lucatelli ◽  
Bruno Rodríguez Del Pino

ABSTRACT We explore the morphometric properties of a group of 73 ram-pressure stripping candidates in the A901/A902 multicluster system, at z∼ 0.165, to characterize the morphologies and structural evolution of jellyfish galaxies. By employing a quantitative measurement of morphometric indicators with the algorithm morfometryka on Hubble Space Telescope (F606W) images of the galaxies, we present a novel morphology-based method for determining trail vectors. We study the surface brightness profiles and curvature of the candidates and compare the results obtained with two analysis packages, morfometryka and iraf/ellipse on retrieving information of the irregular structures present in the galaxies. Our morphometric analysis shows that the ram-pressure stripping candidates have peculiar concave regions in their surface brightness profiles. Therefore, these profiles are less concentrated (lower Sérsic indices) than other star-forming galaxies that do not show morphological features of ram-pressure stripping. In combination with morphometric trail vectors, this feature could both help identify galaxies undergoing ram-pressure stripping and reveal spatial variations in the star formation rate.


2016 ◽  
Vol 25 (3) ◽  
Author(s):  
E. O. Vasiliev ◽  
S. A. Khoperskov ◽  
A. V. Khoperskov

AbstractWe use


2018 ◽  
Vol 477 (4) ◽  
pp. 5568-5589 ◽  
Author(s):  
Melanie Kaasinen ◽  
Lisa Kewley ◽  
Fuyan Bian ◽  
Brent Groves ◽  
Daichi Kashino ◽  
...  

2011 ◽  
Vol 735 (1) ◽  
pp. 53 ◽  
Author(s):  
Shannon G. Patel ◽  
Daniel D. Kelson ◽  
Bradford P. Holden ◽  
Marijn Franx ◽  
Garth D. Illingworth

1987 ◽  
Vol 115 ◽  
pp. 647-647
Author(s):  
U. Klein ◽  
J. Heidmann ◽  
R. Wielebinski ◽  
E. Wunderlich

The four clumpy irregular galaxies Mkr 8, 296,297 and 325 have been observed by IRAS. All galaxies have been detected in at least two of the four detector bands. The ratios of the 100 to 60-m flux densities are comparable to those of HII regions or violently star forming galaxies. The average star formation rate in clumpy irregular galaxies is of the order of a few solar masses per year (based on their average far-infrared luminosity and a Hubble constant of 75 km s−1 Mpc−1.


Author(s):  
P Bonfini ◽  
A Zezas ◽  
M L N Ashby ◽  
S P Willner ◽  
A Maragkoudakis ◽  
...  

Abstract We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/Ks-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density j = 1.72 ± 0.93 × 109 L⊙  h−1 Mpc−3 and a total stellar mass density ρM = 4.61 ± 2.40 × 108 M⊙  h−1 Mpc−3. While the stellar mass of the average star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local (z = 0) star-forming galaxies.


Sign in / Sign up

Export Citation Format

Share Document