ionization parameter
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 5)

2021 ◽  
Vol 923 (1) ◽  
pp. 78
Author(s):  
Amit N. Sawant ◽  
Eric W. Pellegrini ◽  
M. S. Oey ◽  
Jesús López-Hernández ◽  
Genoveva Micheva

Abstract We employ ionization-parameter mapping (IPM) to infer the optical depth of H ii regions in the northern half of M33. We construct [O iii]λ5007/[O ii]λ3727 and [O iii]λ5007/[S ii]λ6724 ratio maps from narrowband images continuum-subtracted in this way, from which we classify the H ii regions by optical depth to ionizing radiation, based on their ionization structure. This method works relatively well in the low-metallicity regime, 12 + log ( O / H ) ≤ 8.4 , where [O iii]λ λ4959, 5007 is strong. However, at higher metallicities, the method breaks down due to the strong dependence of the [O iii]λ λ4959, 5007 emission lines on the nebular temperature. Thus, although O++ may be present in metal-rich H ii regions, these commonly used emission lines do not serve as a useful indicator of its presence, and hence the O ionization state. In addition, IPM as a diagnostic of optical depth is limited by spatial resolution. We also report a region of highly excited [O iii] extending over an area ∼1 kpc across and [O iii]λ5007 luminosity of 4.9 ± 1.5 × 1038 erg s−1, which is several times higher than the ionizing budget of any potential sources in this portion of the galaxy. Finally, this work introduces a new method for continuum subtraction of narrowband images based on the dispersion of pixels around the mode of the diffuse-light flux distribution. In addition to M33, we demonstrate the method on C iii]λ1909 imaging of Haro 11, ESO 338-IG004, and Mrk 71.


2021 ◽  
Vol 922 (2) ◽  
pp. 156
Author(s):  
Christopher J. Agostino ◽  
Samir Salim ◽  
S. M. Faber ◽  
Stéphanie Juneau ◽  
David C. Koo ◽  
...  

Abstract Ionization sources other than H ii regions give rise to the right-hand branch in the standard ([N ii]) BPT diagram, populated by Seyfert 2s and LINERs. However, because the majority of Seyfert/LINER hosts are star-forming (SF), H ii regions contaminate the observed lines to some extent, making it unclear if the position along the branch is merely due to various degrees of mixing between pure Seyferts/LINERs and SF, or whether it reflects the intrinsic diversity of Seyfert/LINER ionizing sources. In this study, we empirically remove SF contributions in ∼100,000 Seyferts/LINERs from SDSS using the doppelganger method. We find that mixing is not the principal cause of the extended morphology of the observed branch. Rather, Seyferts/LINERs intrinsically have a wide range of line ratios. Variations in ionization parameter and metallicity can account for much of the diversity of Seyfert/LINER line ratios, but the hardness of the ionization field also varies significantly. Furthermore, our k-means classification on seven decontaminated emission lines reveals that LINERs are made up of two populations, which we call soft and hard LINERs. The Seyfert 2s differ from both types of LINERs primarily by higher ionization parameter, whereas the two LINER types mainly differ from each other (and from star-forming regions) in the hardness of the radiation field. We confirm that the [N ii] BPT diagram more efficiently identifies LINERs than [S ii] and [O i] diagnostics, because in the latter many LINERs, especially soft ones, occupy the same location as pure starformers, even after the SF has been removed from LINER emission.


Atoms ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 94
Author(s):  
Paola Marziani ◽  
Ascension del Olmo ◽  
Jaime Perea ◽  
Mauro D’Onofrio ◽  
Swayamtrupta Panda

This paper reviews several basic emission properties of the UV emission lines observed in the spectra of quasars and type-1 active galactic nuclei, mainly as a function of the ionization parameter, metallicity, and density of the emitting gas. The analysis exploits a general-purpose 4D array of the photoionization simulations computed using the code CLOUDY, covering ionization parameter in the range 10−4.5–10+1.0, hydrogen density nH∼107–1014 cm−3, metallicity Z between 0.01 and 100 Z⊙, and column density in the range 1021–1023 cm−2. The focus is on the most prominent UV emission lines observed in quasar spectra, namely Nvλ1240, Siivλ1397, Oiv]λ1402, Civλ1549, Heiiλ1640, Aliiiλ1860, Siiii]λ1892, and Ciii]λ1909, and on the physical conditions under which electron-ion impact excitation is predicted to be the dominant line producer. Photoionization simulations help constrain the physical interpretation and the domain of applicability of spectral diagnostics derived from measurements of emission line ratios, reputed to be important for estimating the ionization degree, density, and metallicity of the broad line emitting gas, as well as the relative intensity ratios of the doublet or multiplet components relevant for empirical spectral modeling.


2020 ◽  
Vol 500 (2) ◽  
pp. 2063-2075
Author(s):  
Conor Wildy ◽  
Hermine Landt ◽  
Martin J Ward ◽  
Bożena Czerny ◽  
Daniel Kynoch

ABSTRACT The nucleus of the active galaxy NGC 5548 was the target of two intensive spectroscopic monitoring campaigns at X-ray, ultraviolet (UV), and optical frequencies in 2013/2014. These campaigns detected the presence of a massive obscuration event. In 2016/2017, Landt et al. conducted a near-IR spectroscopic monitoring campaign on NGC 5548 and discovered He i  1.08-μm absorption. Here, we decompose this absorption into its components and study its time variability. We attribute the narrow He  i absorption lines to the warm absorber (WA) and, as for the newly appeared low-ionization WA lines in the UV, their presence is most likely due to a reduction in ionization parameter caused by the obscurer. The observed variability of the narrow He i absorption is consistent with what is expected for the WA. Most importantly, we also detect fast, broad He i absorption, which we attribute to the obscurer. This He i broad absorption, which is indicative of a high column density gas, is unsaturated and variable on time-scales of a few months. The observed variability of the obscurer is mainly due to changes in ionization, although density changes also play a role. We test the physical cycle model of Dehghanian et al. which proposes that helium recombination can account for how the obscurer influences the physics of the WA gas. Our results support their model, but also indicate that the reality might be more complex.


2020 ◽  
Vol 499 (2) ◽  
pp. 1652-1665
Author(s):  
Michael W Topping ◽  
Alice E Shapley ◽  
Naveen A Reddy ◽  
Ryan L Sanders ◽  
Alison L Coil ◽  
...  

ABSTRACT We present constraints on the massive star and ionized gas properties for a sample of 62 star-forming galaxies at z ∼ 2.3. Using BPASS stellar population models, we fit the rest-UV spectra of galaxies in our sample to estimate age and stellar metallicity which, in turn, determine the ionizing spectrum. In addition to the median properties of well-defined subsets of our sample, we derive the ages and stellar metallicities for 30 high-SNR individual galaxies – the largest sample of individual galaxies at high redshift with such measurements. Most galaxies in this high-SNR subsample have stellar metallicities of 0.001 < Z* < 0.004. We then use Cloudy + BPASS photoionization models to match observed rest-optical line ratios and infer nebular properties. Our high-SNR subsample is characterized by a median ionization parameter and oxygen abundance, respectively, of log (U)med = −2.98 ± 0.25 and 12 + log (O/H)med = 8.48 ± 0.11. Accordingly, we find that all galaxies in our sample show evidence for α-enhancement. In addition, based on inferred log (U) and 12 + log (O/H) values, we find that the local relationship between ionization parameter and metallicity applies at z ∼ 2. Finally, we find that the high-redshift galaxies most offset from the local excitation sequence in the BPT diagram are the most α-enhanced. This trend suggests that α-enhancement resulting in a harder ionizing spectrum at fixed oxygen abundance is a significant driver of the high-redshift galaxy offset on the BPT diagram relative to local systems. The ubiquity of α-enhancement among z ∼ 2.3 star-forming galaxies indicates important differences between high-redshift and local galaxies that must be accounted for in order to derive physical properties at high redshift.


2020 ◽  
Vol 498 (3) ◽  
pp. 4150-4177 ◽  
Author(s):  
R Davies ◽  
D Baron ◽  
T Shimizu ◽  
H Netzer ◽  
L Burtscher ◽  
...  

ABSTRACT We report on the determination of electron densities, and their impact on the outflow masses and rates, measured in the central few hundred parsecs of 11 local luminous active galaxies. We show that the peak of the integrated line emission in the active galactic nuclei (AGN) is significantly offset from the systemic velocity as traced by the stellar absorption features, indicating that the profiles are dominated by outflow. In contrast, matched inactive galaxies are characterized by a systemic peak and weaker outflow wing. We present three independent estimates of the electron density in these AGN, discussing the merits of the different methods. The electron density derived from the [S ii] doublet is significantly lower than that found with a method developed in the last decade using auroral and transauroral lines, as well as a recently introduced method based on the ionization parameter. The reason is that, for gas photoionized by an AGN, much of the [S ii] emission arises in an extended partially ionized zone where the implicit assumption that the electron density traces the hydrogen density is invalid. We propose ways to deal with this situation and we derive the associated outflow rates for ionized gas, which are in the range 0.001–0.5 M⊙ yr−1 for our AGN sample. We compare these outflow rates to the relation between $\dot{M}_{\rm out}$ and LAGN in the literature, and argue that it may need to be modified and rescaled towards lower mass outflow rates.


2020 ◽  
Vol 498 (1) ◽  
pp. 164-180 ◽  
Author(s):  
Harley Katz ◽  
Dominika Ďurovčíková ◽  
Taysun Kimm ◽  
Joki Rosdahl ◽  
Jeremy Blaizot ◽  
...  

ABSTRACT Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S ii]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S ii Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C ii]158 μm and [O iii]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.


2020 ◽  
Vol 497 (4) ◽  
pp. 4213-4221
Author(s):  
Ritesh Ghosh ◽  
Sibasish Laha

ABSTRACT We have extensively studied the broad--band X-ray spectra of the source ESO 141–G055 using all available XMM–Newton and NuSTAR observations. We detect a prominent soft excess below $2\rm \, \, {\rm keV}$, a narrow Fe line, and a Compton hump ($\gt 10\rm \, \, {\rm keV}$). The origin of the soft excess is still debated. We used two models to describe the soft excess: the blurred reflection from the ionized accretion disc and the intrinsic thermal Comptonization model. We find that both of these models explain the soft excess equally well. We confirm that we do not detect any broad Fe line in the X-ray spectra of this source, although both the physical models prefer a maximally spinning black hole scenario (a > 0.96). This may mean that either the broad Fe line is absent or blurred beyond detection. The Eddington rate of the source is estimated to be $\lambda _{\rm \, Edd}\sim 0.31$. In the reflection model, the Compton hump has a contribution from both ionized and neutral reflection components. The neutral reflector which simultaneously describes the narrow Fe K α and the Compton hump has a column density of $N_{\rm H} \ge 7\times 10^{24} \, \rm cm^{-2}$. In addition, we detect a partially covering ionized absorption with ionization parameter $\log \xi /\rm \, erg\, cm\, s^{-1}$  = $0.1^{+0.1}_{-0.1}$ and column density $N_{\rm H} =20.6^{+1.0}_{-1.0}\times 10^{22} \, \rm cm^{-2}$ with a covering factor of $0.21^{+0.01}_{-0.01}$.


2020 ◽  
Vol 498 (1) ◽  
pp. 68-76 ◽  
Author(s):  
D J K Buisson ◽  
D Altamirano ◽  
M Díaz Trigo ◽  
M Mendez ◽  
M Armas Padilla ◽  
...  

ABSTRACT We find soft X-ray emission lines from the X-ray binary Swift J1858.6–0814 in data from XMM–NewtonReflection Grating Spectrometer (RGS): N vii, O vii, and O viii, as well as notable residuals short of a detection at Ne ix and other higher ionization transitions. These could be associated with the disc atmosphere, as in accretion disc corona sources, or with a wind, as has been detected in Swift J1858.6–0814 in emission lines at optical wavelengths. Indeed, the N vii line is redshifted, consistent with being the emitting component of a P-Cygni profile. We find that the emitting plasma has an ionization parameter log (ξ) = 1.35 ± 0.2 and a density n > 1.5 × 1011 cm−3. From this, we infer that the emitting plasma must be within 1013 cm of the ionizing source, ∼5 × 107 rg for a 1.4 M⊙ neutron star, and from the line width that it is at least 104 rg away [2 × 109(M/1.4 M⊙) cm]. We compare this with known classes of emission-line regions in other X-ray binaries and active galactic nuclei.


2020 ◽  
Vol 896 (2) ◽  
pp. 93 ◽  
Author(s):  
Yuichi Harikane ◽  
Masami Ouchi ◽  
Akio K. Inoue ◽  
Yoshiki Matsuoka ◽  
Yoichi Tamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document