scholarly journals X-ray variability of accreting black hole systems: propagating-fluctuation scenario

2006 ◽  
Vol 2 (S238) ◽  
pp. 319-320
Author(s):  
Patricia Arévalo ◽  
Phil Uttley ◽  
Ian McHardy

AbstractPropagating fluctuation models can reproduce fundamental properties of the variability observed in the X-ray light curves of accreting black hole systems. We explore this type of model and show how extended emitting regions introduce at the same time energy dependent power spectral densities (PSD) and time lags between different energy bands.

2020 ◽  
Vol 499 (2) ◽  
pp. 2513-2522
Author(s):  
E Sonbas ◽  
K Mohamed ◽  
K S Dhuga ◽  
A Tuncer ◽  
E Göğüş

ABSTRACT Black hole transients are known to undergo spectral transitions that form q-shaped tracks on a hardness intensity diagram. In this work, we use the archival Rossi X-ray Timing Explorer data to extract a characteristic minimal time-scale for the spectral states in GX 339−4 for the 2002–2003 and 2010 outbursts. We use the extracted time-scale to construct an intensity variability diagram for each outburst. This new diagram is comparable to the traditional hardness intensity diagram and offers the potential for probing the underlying dynamics associated with the evolution of the relevant emission regions in black hole transients. We confirm this possibility by connecting the minimal time-scale with the inner disc radius, Rin (estimated from spectral fits), and demonstrate a positive correlation between these variables as the system evolves through its spectral transitions. Furthermore, we probe the relation between the minimal time-scale and the break frequencies extracted from the power spectral densities. Lastly, we examine a possible link between the extracted time-scale and a traditional measure of variability, i.e. the root mean square, determined directly from the power spectra.


2019 ◽  
Vol 625 ◽  
pp. A90 ◽  
Author(s):  
Pablo Reig ◽  
Nikolaos D. Kylafis

Context. Galactic black-hole X-ray binaries (BHBs) emit a compact, optically thick, mildly relativistic radio jet when they are in hard and hard-intermediate states. In these states, BHBs exhibit a correlation between the time lag of hard with respect to softer photons and the photon index of the power law component that characterizes the X-ray spectral continuum above ∼10 keV. The correlation, however, shows large scatter. In recent years, several works have brought to light the importance of taking into account the inclination of the systems to understand the X-ray and radio phenomenology of BHBs. Aims. Our objective is to investigate the role that the inclination plays on the correlation between the time lag and photon index. Methods. We obtained RXTE energy spectra and light curves of a sample of BHBs with different inclination angles. We computed the photon index and the time lag between hard and soft photons and performed a correlation and linear regression analysis of the two variables. We also computed energy spectra and light curves of BHBs using the Monte Carlo technique that reproduces the process of Comptonization in the jet. We account for the inclination effects by recording the photons that escape from the jet at different angles. From the simulated light curves and spectra we obtained model-dependent photon index and time lags, which we compared with those obtained from the real data. Results. We find that the correlation between the time lag and photon index is tight in low-inclination systems and becomes weaker in high-inclination systems. The amplitude of the lags is also larger at low- and intermediate-inclination angles than at high inclination. We also find that the photon index and time lag, obtained from the simulated spectra and light curves, also follow different relationships for different inclination angle ranges. Our jet model reproduces the observations remarkably well. The same set of models that reproduces the correlation for the low-inclination systems, also accounts for the correlation for intermediate- and high-inclination systems fairly well. Conclusions. The large dispersion observed in the time lag – photon index correlation in BHBs can naturally be explained as an inclination effect. Comptonization in the jet explains the steeper dependence of the lags on the photon index in low- and intermediate-inclination systems than in high-inclination systems.


1994 ◽  
Vol 435 ◽  
pp. 398 ◽  
Author(s):  
Sigenori Miyamoto ◽  
Shunji Kitamoto ◽  
Sayuri Iga ◽  
Kiyoshi Hayashida ◽  
Kentaro Terada

2003 ◽  
Vol 593 (1) ◽  
pp. 96-114 ◽  
Author(s):  
A. Markowitz ◽  
R. Edelson ◽  
S. Vaughan ◽  
P. Uttley ◽  
I. M. George ◽  
...  

2002 ◽  
Vol 54 (4) ◽  
pp. 609-627 ◽  
Author(s):  
Kentaro Terada ◽  
Shunji Kitamoto ◽  
Hitoshi Negoro ◽  
Sayuri Iga

2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


1971 ◽  
Vol 12 (1-2) ◽  
pp. 41-51 ◽  
Author(s):  
Vrudhula K. Murthy ◽  
L. Julian Haywood ◽  
John Richardson ◽  
Robert Kalaba ◽  
Steven Salzberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document