scholarly journals The radial velocity acceleration of the 6.7 GHz methanol maser in Mon R2 IRS3

2012 ◽  
Vol 8 (S287) ◽  
pp. 190-191
Author(s):  
K. Sugiyama ◽  
K. Fujisawa ◽  
N. Shino ◽  
A. Doi

AbstractWe present the radial velocity acceleration of the 6.7 GHz methanol maser in a high-mass star-forming region Monoceros R2 (Mon R2). The methanol maser is associated with an infrared source IRS3. The methanol maser of Mon R2 shows at least three spectral features having radial velocities (Vlsr) of 10.8, 12.7, and 13.2 km s−1. The radial velocity of a feature at Vlsr = 12.7 km s−1 has changed during ten years from Aug. 1999 to Oct. 2009, corresponding to an acceleration of 0.08 km s−1 yr−1. We observed the 6.7 GHz methanol masers of Mon R2 in Oct. 2008 using the Japanese VLBI Network (JVN). Compared with the previous VLBI image obtained in Nov. 1998 using the European VLBI Network (EVN), the maser feature at Vlsr = 12.7 km s−1 showed relative proper motions of ~2.5 mas yr−1 (about 10 km s−1 at 0.83 kpc) toward the intensity peak of IRS3. The radial velocity acceleration could be caused by an inflow from a disk or envelope around a high-mass young stellar object (YSO) at IRS3.

2012 ◽  
Vol 8 (S287) ◽  
pp. 133-140
Author(s):  
S. E. Kurtz

AbstractClass I 44 GHz methanol masers are not as well-known, as common, or as bright as their more famous Class II cousins at 6.7 and 12.2 GHz. Nevertheless, the 44 GHz masers are commonly found in high-mass star forming regions. At times they appear to trace dynamically important phenomena; at other times they show no obvious link to the star formation process. Here, we summarize the major observational efforts to date, including both dedicated surveys and collateral observations. The principal results are presented, some that were expected, and others that were unexpected.


2012 ◽  
Vol 8 (S292) ◽  
pp. 39-39
Author(s):  
S. L. Breen ◽  
S. P. Ellingsen

AbstractDetermining an evolutionary clock for high-mass star formation is an important step towards realizing a unified theory of star formation, as it will enable qualitative studies of the associated high-mass stars to be executed. Our recent studies have shown that masers have great potential to accurately trace the evolution of these regions. We have investigated the relative evolutionary phases associated with the presence of combinations of water, methanol and hydroxyl masers. Comparison between the characteristics of coincident sources has revealed strong evidence for an evolutionary sequence for the different maser species, a result that we now aim to corroborate through comparisons with chemical clocks.Using our new, large samples of methanol masers at 6.7 GHz (MMB survey; Green et al. (2009)) and 12.2 GHz (Breen et al. 2012), 22 GHz water masers (Breen & Ellingsen 2012), OH masers together with complementary data, we find strong evidence that it is not only the presence or absence of the different maser species that indicates the evolutionary stage of the associated high-mass star formation region (see e.g. Breen et al. (2010)), but that the properties of those masers can give even finer evolutionary details. Most notably, the intensity and velocity range of detected maser emission increases as the star forming region evolves (Breen et al. 2011).Subsequent work we have undertaken (Ellingsen et al. 2011) has shown that the presence of rare 37.7 GHz methanol masers may signal the end of the methanol maser phase. They show that 37.7 GHz methanol masers are associated only with the most luminous 6.7 and 12.2 GHz methanol masers, which combined with the rarity of these objects is consistent with them being a short lived phase towards the end of the 6.7 GHz methanol maser lifetime.An independent confirmation of our maser evolutionary timeline can be gained through comparisons with chemical clocks. MALT90 is a legacy survey of 1000s of dense star forming cores at 90GHz, simultaneously observing 16 molecular lines with the Mopra radio telescope (see e.g. Foster et al. 2011). It provides the perfect dataset to test the maser evolutionary timeline due to the targeted lines and the fact that at least one-quarter of the MALT90 sources correspond to maser sites, providing a large enough sample for meaningful analysis. From our preliminary analysis, we find that star formation regions showing similar maser properties also show similar thermal line properties; as would be expected if our evolutionary scenario were accurate.


2012 ◽  
Vol 8 (S287) ◽  
pp. 433-440 ◽  
Author(s):  
M. A. Voronkov ◽  
J. L. Caswell ◽  
S. P. Ellingsen ◽  
S. L. Breen ◽  
T. R. Britton ◽  
...  

AbstractWe review properties of all known collisionally pumped (class I) methanol maser series based on observations with the Australia Telescope Compact Array (ATCA) and the Mopra radio telescope. Masers at 36, 84, 44 and 95 GHz are most widespread, while 9.9, 25, 23.4 and 104 GHz masers are much rarer, tracing the most energetic shocks. A survey of many southern masers at 36 and 44 GHz suggests that these two transitions are highly complementary. The 23.4 GHz maser is a new type of rare class I methanol maser, detected only in two high-mass star-forming regions, G357.97-0.16 and G343.12-0.06, and showing a behaviour similar to 9.9, 25 and 104 GHz masers. Interferometric positions suggest that shocks responsible for class I masers could arise from a range of phenomena, not merely an outflow scenario. For example, some masers might be caused by interaction of an expanding Hii region with its surrounding molecular cloud. This has implications for evolutionary sequences incorporating class I methanol masers if they appear more than once during the evolution of the star-forming region. We also make predictions for candidate maser transitions in the ALMA frequency range.


2002 ◽  
Vol 187 ◽  
pp. 279-284
Author(s):  
I.E. Val’tts ◽  
V.I. Slysh ◽  
M.A. Voronkov ◽  
V. Migenes

AbstractRadio images of maser spots in the infrared source RAFGL 2789, connected with the young stellar object V645 Cyg, have been obtained as a result of radio interferometric observations of the H2O maser at 22 GHz and the methanol maser at 6.7 GHz, with the VLBI arrays VLBA and EVN. It is shown that the position of the masers coincides with the optical object within 02. The maser spots are located along the line North-South, and their position and radial velocity can be described by a model of a Keplerian disk with a maximum radius of 40 AU for the H2O maser and 800 AU for the methanol maser. The H2O and methanol maser spots have not been resolved, and lower limits of the brightness temperature are 2 × 1013 K and 1.4 × 109 k respectively. A model of the maser is suggested in which the maser emission is generated in extended water and methanol envelopes of icy planets orbiting the young star.


2002 ◽  
Vol 206 ◽  
pp. 147-150
Author(s):  
Vincent Minier ◽  
Roy Booth ◽  
John Conway ◽  
Michele Pestalozzi

We summarise our recent VLBI observations of a large sample of methanol maser sources associated with high-mass star-forming regions.


2007 ◽  
Vol 3 (S248) ◽  
pp. 214-216
Author(s):  
Y. Xu ◽  
M. J. Reid ◽  
K. M. Menten ◽  
X. W. Zheng ◽  
A. Brunthaler ◽  
...  

AbstractWe have measured the distance to the high-mass star-forming region G59.7+0.1 (IRAS 19410+2336) and W3OH. Their distances, 2.20 ± 0.11 kpc and 1.95 ± 0.04 kpc, respectively, were determined by triangulation using Very Long Baseline Array (VLBA) observations of 12.2 GHz methanol masers phase-referenced to compact extragalactic radio sources. In addition to the distances, we have also obtained their proper motions.


2007 ◽  
Vol 3 (S242) ◽  
pp. 178-179
Author(s):  
Karl J. E. Torstensson ◽  
Huib Jan van Langevelde ◽  
Stephen Bourke

AbstractWe are carrying out a program to observe the 6.7 GHz methanol maser emission in high-mass star-forming regions using large FOV (~2'), astrometric, VLBI data. Here we report on the first results of the inner few arc seconds in Cepheus A East. We find a maser filament extending over ~1.7” (1200 AU), straddling the waist of Cep A HW2. The region in which the CH3OH masers are found contains several YSO's and it is not clear whether the CH3OH masers are associated with several different objects or rather the larger scale surrounding environment.


2007 ◽  
Vol 655 (1) ◽  
pp. 484-491 ◽  
Author(s):  
Daniel Apai ◽  
Arjan Bik ◽  
Lex Kaper ◽  
Thomas Henning ◽  
Hans Zinnecker

2010 ◽  
Vol 517 ◽  
pp. A56 ◽  
Author(s):  
F. Fontani ◽  
R. Cesaroni ◽  
R. S. Furuya

Sign in / Sign up

Export Citation Format

Share Document