scholarly journals Scaling Laws for Dark Matter Halos in Late-Type and Dwarf Spheroidal Galaxies

2014 ◽  
Vol 10 (S311) ◽  
pp. 72-77
Author(s):  
John Kormendy ◽  
K. C. Freeman

AbstractDark matter (DM) halos of Sc–Im galaxies satisfy structural scaling laws analogous to the fundamental plane relations for elliptical galaxies. Halos in less luminous galaxies have smaller core radii rc, higher central densities ρ^, and smaller central velocity dispersions σ. If dwarf spheroidal (dSph) and dwarf Magellanic irregular (dIm) galaxies lie on the extrapolations of these correlations, then we can estimate their baryon loss relative to that of Sc–Im galaxies. We find that, if there had been no enhanced baryon loss relative to Sc–Im galaxies, typical dSph and dIm galaxies would be brighter by ΔMB ≃ -4.0 mag and ΔMB ≃ -3.5 mag, respectively. Instead, the galaxies lost or retained as gas (in dIm galaxies) baryons that could have formed stars. Also, dSph and dIm galaxies have DM halos that are more massive than we thought, with σ ~ 30 km s−1 or circular-orbit rotation velocities Vcirc ~ 42 km s−1. Comparison of DM and visible matter parameter correlations confirms that, at MV ≳ -18, dSph and dIm galaxies form a sequence of decreasing baryon-to-DM mass ratios in smaller dwarfs. We show explicitly that galaxy baryon content goes to (almost) zero at Vcirc ≲ 42 ± 4 km s−1, in agreement with Vcirc as found from our estimate of baryon depletion. Our results suggest that there may be a large population of DM halos that are dark and undiscovered. This helps to solve the problem that the initial fluctuation spectrum of cold dark matter predicts more dwarf galaxies than we observe.

2018 ◽  
Vol 14 (S344) ◽  
pp. 455-463
Author(s):  
Julio F. Navarro

AbstractThe Lambda Cold Dark Matter (LCDM) paradigm makes specific predictions for the abundance, structure, substructure and clustering of dark matter halos, the sites of galaxy formation. These predictions can be directly tested, in the low-mass halo regime, by dark matter-dominated dwarf galaxies. A number of potential challenges to LCDM have been identified when confronting the expected properties of dwarfs with observation. I review our understanding of a few of these issues, including the “missing satellites” and the “too-big-to-fail” problems, and argue that neither poses an insurmountable challenge to LCDM. Solving these problems requires that most dwarf galaxies inhabit halos of similar mass, and that there is a relatively sharp minimum halo mass threshold to form luminous galaxies. These predictions are eminently falsifiable. In particular, LCDM predicts a large number of “dark” low-mass halos, some of which should have retained enough primordial gas to be detectable in deep 21 cm or Hα surveys. Detecting this predicted population of “mini-halos” would be a major discovery and a resounding success for LCDM on small scales.


2009 ◽  
Vol 5 (H15) ◽  
pp. 85-85
Author(s):  
Luca Ciotti

AbstractThe effects of dry and wet merging on the Scaling Laws (SLs) of elliptical galaxies (Es) are discussed. It is found that the SLs, possibly established at high redshift by the fast collapse of gas-rich and clumpy stellar distributions in preexisting dark matter halos following the cosmological SLs, are compatible with a (small) number of galaxy mergers at lower redshift.


2004 ◽  
Vol 220 ◽  
pp. 377-397 ◽  
Author(s):  
John Kormendy ◽  
K. C. Freeman

Published mass models fitted to galaxy rotation curves are used to study the systematic properties of dark matter (DM) halos in late-type and dwarf spheroidal (dSph) galaxies. Halo parameters are derived by fitting non-singular isothermals to (V2 – V2vis)1/2, where V(r) is the observed rotation curve and Vvis is the rotation curve of the visible matter. the latter is calculated from the surface brightness assuming that the mass-to-light ratio M/L is constant with radius. “Maximum disk” values of M/L are adjusted to fit as much of the inner rotation curve as possible without making the halo have a hollow core. Rotation curve decomposition becomes impossible fainter than absolute magnitude Mb ≃ −14, where V becomes comparable to the velocity dispersion of the gas. To increase the luminosity range further, we include dSph galaxies, which are physically related to spiral and irregular galaxies. Combining the data, we find that DM halos satisfy well defined scaling laws analogous to the “fundamental plane” relations for elliptical galaxies. Halos in less luminous galaxies have smaller core radii rc, higher central densities ρ0, and smaller central velocity dispersions σ. Scaling laws provide new and detailed constraints on the nature of DM and on galaxy formation and evolution. Some simple implications include:1 – A single, continuous physical sequence of increasing mass extends from dSph galaxies with Mb ≃ −7.6 to Sc I galaxies with Mb ≃ −22.4.2 – the high DM densities in dSph galaxies are normal for such tiny galaxies. Since virialised density depends on collapse redshift zcoll, ρ0 ∝ (1 + zcoll)3, the smallest dwarfs formed at least Δzcoll ≃ 7 earlier than the biggest spirals.3 – the high DM densities of dSphs implies that they are real galaxies formed from primordial density fluctuations. They are not tidal fragments. Tidal dwarfs cannot retain even the low DM densities of their giant-galaxy progenitors. in contrast, dSphs have higher DM densities than do giant-galaxy progenitors.4 – the fact that, as luminosity decreases, dwarf galaxies become much more numerous and also more nearly dominated by DM raises the possibility that there exists a large population of objects that are completely dark. Such objects are a canonical prediction of cold DM theory. If they exist, “empty halos” are likely to be small and dense -that is, darker versions of Draco and UMi.5 – the slopes of the DM parameter correlations provide a measure on galactic mass scales of the slope n of the power spectrum |δk|2 ∝ kn of primordial density fluctuations. Our preliminary results, not yet corrected for baryonic compression of DM, give n ≃ –1.9 ± 0.2. This is consistent with cold DM theory.


2019 ◽  
Vol 487 (4) ◽  
pp. 5711-5720 ◽  
Author(s):  
D Savchenko ◽  
A Rudakovskyi

ABSTRACTDwarf spheroidal galaxies (dSphs) are the most compact dark-matter-dominated objects observed so far. The Pauli exclusion principle limits the number of fermionic dark matter particles that can compose a dSph halo. This results in a well-known lower bound on their particle mass. So far, such bounds were obtained from the analysis of individual dSphs. In this paper, we model dark matter halo density profiles via the semi-analytical approach and analyse the data from eight ‘classical’ dSphs assuming the same mass of dark matter fermion in each object. First, we find out that modelling of Carina dSph results in a much worse fitting quality compared to the other seven objects. From the combined analysis of the kinematic data of the remaining seven ‘classical’ dSphs, we obtain a new 2σ lower bound of m ≳ 190 eV on the dark matter fermion mass. In addition, by combining a sub-sample of four dSphs – Draco, Fornax, Leo I, and Sculptor – we conclude that 220 eV fermionic dark matter appears to be preferred over the standard cold dark matter at about the 2σ level. However, this result becomes insignificant if all seven objects are included in the analysis. Future improvement of the obtained bound requires more detailed data, both from ‘classical’ and ultra-faint dSphs.


2001 ◽  
Vol 554 (2) ◽  
pp. 903-915 ◽  
Author(s):  
Anatoly Klypin ◽  
Andrey V. Kravtsov ◽  
James S. Bullock ◽  
Joel R. Primack

1999 ◽  
Vol 183 ◽  
pp. 155-155
Author(s):  
Toshiyuki Fukushige ◽  
Junichiro Makino

We performed N-body simulation on special-purpose computer, GRAPE-4, to investigate the structure of dark matter halos (Fukushige, T. and Makino, J. 1997, ApJL, 477, L9). Universal profile proposed by Navarro, Frenk, and White (1996, ApJ, 462, 563), which has cusp with density profiles ρ ∝r−1in density profile, cannot be reproduced in the standard Cold Dark Matter (CDM) picture of hierarchical clustering. Previous claims to the contrary were based on simulations with relatively few particles, and substantial softening. We performed simulations with particle numbers an order of magnitude higher, and essentially no softening, and found that typical central density profiles are clearly steeper than ρ ∝r−1, as shown in Figure 1. In addition, we confirm the presence of a temperature inversion in the inner 5 kpc of massive galactic halos, and give a natural explanation for formation of the temperature structure.


2010 ◽  
Vol 25 (02n03) ◽  
pp. 554-563 ◽  
Author(s):  
P. SIKIVIE

The hypothesis of an 'invisible' axion was made by Misha Shifman and others, approximately thirty years ago. It has turned out to be an unusually fruitful idea, crossing boundaries between particle physics, astrophysics and cosmology. An axion with mass of order 10-5 eV (with large uncertainties) is one of the leading candidates for the dark matter of the universe. It was found recently that dark matter axions thermalize and form a Bose-Einstein condensate (BEC). Because they form a BEC, axions differ from ordinary cold dark matter (CDM) in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles. Because there is evidence for these phenomena, unexplained with ordinary CDM, an argument can be made that the dark matter is axions.


1994 ◽  
Vol 431 ◽  
pp. 559 ◽  
Author(s):  
Wojciech H. Zurek ◽  
Peter J. Quinn ◽  
John K. Salmon ◽  
Michael S. Warren

Sign in / Sign up

Export Citation Format

Share Document