scholarly journals Resolving the Structure of Cold Dark Matter Halos

2001 ◽  
Vol 554 (2) ◽  
pp. 903-915 ◽  
Author(s):  
Anatoly Klypin ◽  
Andrey V. Kravtsov ◽  
James S. Bullock ◽  
Joel R. Primack
1999 ◽  
Vol 183 ◽  
pp. 155-155
Author(s):  
Toshiyuki Fukushige ◽  
Junichiro Makino

We performed N-body simulation on special-purpose computer, GRAPE-4, to investigate the structure of dark matter halos (Fukushige, T. and Makino, J. 1997, ApJL, 477, L9). Universal profile proposed by Navarro, Frenk, and White (1996, ApJ, 462, 563), which has cusp with density profiles ρ ∝r−1in density profile, cannot be reproduced in the standard Cold Dark Matter (CDM) picture of hierarchical clustering. Previous claims to the contrary were based on simulations with relatively few particles, and substantial softening. We performed simulations with particle numbers an order of magnitude higher, and essentially no softening, and found that typical central density profiles are clearly steeper than ρ ∝r−1, as shown in Figure 1. In addition, we confirm the presence of a temperature inversion in the inner 5 kpc of massive galactic halos, and give a natural explanation for formation of the temperature structure.


2010 ◽  
Vol 25 (02n03) ◽  
pp. 554-563 ◽  
Author(s):  
P. SIKIVIE

The hypothesis of an 'invisible' axion was made by Misha Shifman and others, approximately thirty years ago. It has turned out to be an unusually fruitful idea, crossing boundaries between particle physics, astrophysics and cosmology. An axion with mass of order 10-5 eV (with large uncertainties) is one of the leading candidates for the dark matter of the universe. It was found recently that dark matter axions thermalize and form a Bose-Einstein condensate (BEC). Because they form a BEC, axions differ from ordinary cold dark matter (CDM) in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles. Because there is evidence for these phenomena, unexplained with ordinary CDM, an argument can be made that the dark matter is axions.


1994 ◽  
Vol 431 ◽  
pp. 559 ◽  
Author(s):  
Wojciech H. Zurek ◽  
Peter J. Quinn ◽  
John K. Salmon ◽  
Michael S. Warren

2013 ◽  
Vol 454 ◽  
pp. 012014 ◽  
Author(s):  
Go Ogiya ◽  
Masao Mori ◽  
Yohei Miki ◽  
Taisuke Boku ◽  
Naohito Nakasato

2009 ◽  
Vol 24 (29) ◽  
pp. 2291-2305 ◽  
Author(s):  
MARCEL ZEMP

We review results from recent high resolution cosmological structure formation simulations, namely the Via Lactea I & II and GHALO projects. These simulations study the formation of Milky Way sized objects within a cosmological framework. We discuss the general properties of cold dark matter halos at redshift z = 0 and focus on new insights into the structure of halos we got due to the unprecedented high resolution in these simulations.


2017 ◽  
Vol 118 (16) ◽  
Author(s):  
Aaron D. Ludlow ◽  
Alejandro Benítez-Llambay ◽  
Matthieu Schaller ◽  
Tom Theuns ◽  
Carlos S. Frenk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document