scholarly journals Formation of young massive clusters from turbulent molecular clouds

2015 ◽  
Vol 12 (S316) ◽  
pp. 25-30
Author(s):  
Michiko S. Fujii ◽  
Simon Portegies Zwart

AbstractWe simulate the formation and evolution of young star clusters from turbulent molecular clouds using smoothed-particle hydrodynamics and direct N-body methods. We find that the shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with power-law slopes of β = −1.73. The superposition of mass functions turn out to have a power-law slope of < −2. The mass of the most massive cluster formed from a single molecular cloud with mass Mg scales with 6.1 M0.51g. The molecular clouds that tend to form massive clusters are much denser than those typical found in the Milky Way. The velocity dispersion of such molecular clouds reaches 20km s−1 and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603 and Westerlund 2, for which a triggered star formation by cloud-cloud collisions is suggested.

2018 ◽  
Vol 14 (A30) ◽  
pp. 100-100
Author(s):  
Shu-ichiro Inutsuka

AbstractRecent observations have emphasized the importance of the formation and evolution of magnetized filamentary molecular clouds in the process of star formation. Theoretical and observational investigations have provided convincing evidence for the formation of molecular cloud cores by the gravitational fragmentation of filamentary molecular clouds. In this review we summarize our current understanding of various processes that are required in describing the filamentary molecular clouds. Especially we can explain a robust formation mechanism of filamentary molecular clouds in a shock compressed layer, which is in analogy to the making of “Sushi.” We also discuss the origin of the mass function of cores.


2006 ◽  
Vol 2 (S237) ◽  
pp. 204-207
Author(s):  
João Alves

AbstractNear infrared dust extinction mapping is opening a new window on molecular cloud research. Applying a straightforward technique to near infrared large scale data of nearby molecular complexes one can easily construct density maps with dynamic ranges in column density covering, 3σ~ 0.5 < AV< 50 mag or 1021<N<1023 cm−2. These maps are unique in capturing the low column density distribution of gas in molecular cloud complexes, where most of the mass resides, and at the same time allow the identification of dense cores (n~104cm−3) which are the precursors of stars. For example, the application of this technique to the nearby Pipe Nebula complex revealed the presence of 159 dense cores (the largest sample of such object in one single complex) whose mass spectrum presents the first robust evidence for a departure from a single power-law. The form of this mass function is surprisingly similar in shape to the stellar IMF but scaled to a higher mass by a factor of about 3. This suggests that the distribution of stellar birth masses (IMF) is the direct product of the dense core mass function and a uniform star formation efficiency of 30%±10%, and that the stellar IMF may already be fixed during or before the earliest stages of core evolution. We are now extending this technique to extra-galactic mapping of Giant molecular Clouds (GMCs), and although a much less straightforward task, preliminary results indicate that the GMC mass spectrum in M83 and Centaurus A is a power-law characterized by α~−2 unlike CO results which suggest α~−1.


2010 ◽  
Vol 710 (2) ◽  
pp. L142-L146 ◽  
Author(s):  
S. Michael Fall ◽  
Mark R. Krumholz ◽  
Christopher D. Matzner

1998 ◽  
Vol 184 ◽  
pp. 197-199
Author(s):  
C. W. Lee ◽  
H. M. Lee ◽  
H.B. Ann ◽  
K.H. Kwon

We have performed Smoothed Particle Hydrodynamics (SPH) simulations in order to understand the dynamical structures of Galactic Center molecular clouds. In our study it was found that the structures of GC molecular clouds could be induced by the combined effects of a gravitational perturbation by rotating bar potential and the hydrodynamic collisions between the clouds.


1985 ◽  
Vol 106 ◽  
pp. 343-344
Author(s):  
D. Leisawitz ◽  
F. Bash

A major study of the molecular gas surrounding young star clusters is underway. We are using the Columbia University 1.2–m millimeter-wave telescope to observe emission from the J=1→0 rotation transition of 12CO in the vicinities of 128 open star clusters. The survey region around each cluster is at least 10 cluster diameters in size, typically ≳ 5 square degrees. Sensitivity is sufficient to detect lines as weak as 1 K over a range in velocity ± 83 km/s centered on the cluster velocity and with a velocity resolution of 0.65 km/s. Clusters in this sample have well-determined distances ranging from 1 to 5 kpc, and ages ≳ 100 million years (Myr).


2020 ◽  
Vol 496 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Alessandro Ballone ◽  
Michela Mapelli ◽  
Ugo N Di Carlo ◽  
Stefano Torniamenti ◽  
Mario Spera ◽  
...  

ABSTRACT More and more observations indicate that young star clusters could retain imprints of their formation process. In particular, the degree of substructuring and rotation are possibly the direct result of the collapse of the parent molecular cloud from which these systems form. Such properties can, in principle, be washed-out, but they are also expected to have an impact on the relaxation of these systems. We ran and analysed a set of 10 hydrodynamical simulations of the formation of embedded star clusters through the collapse of turbulent massive molecular clouds. We systematically studied the fractality of our star clusters, showing that they are all extremely substructured (fractal dimension D = 1.0–1.8). We also found that fractality is slowly reduced, with time, on small scales, while it persists on large scales on longer time-scales. Signatures of rotation are found in different simulations at every time of the evolution, even for slightly supervirial substructures, proving that the parent molecular gas transfers part of its angular momentum to the new stellar systems.


2009 ◽  
Vol 5 (S265) ◽  
pp. 65-66
Author(s):  
Anne-Katharina Jappsen ◽  
Simon C. O. Glover ◽  
Mordecai-Mark Mac Low ◽  
Ralf S. Klessen

AbstractThe formation of the first stars out of metal-free gas appears to result in stars at least an order of magnitude more massive than in the present-day case. We here consider what controls the transition from a primordial to a modern initial mass function. We study the influence of low levels of metal enrichment and different initial conditions on the cooling and collapse of initially ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics simulations. We argue that fragmentation at moderate density depends on the initial conditions for star formation more than on the metal abundances present.


2009 ◽  
pp. 61-67 ◽  
Author(s):  
M. Nejad-Asghar ◽  
J. Soltani

Molecular clouds have a hierarchical structure from few tens of parsecs for giants to few tenth of a parsec for proto-stellar cores. Nowadays, our observational techniques are so advanced that it has become possible to detect the small-scale substructures inside the molecular cores. The question that arises is how these small condensations are formed. In the present research, we study the effect of ambipolar diffusion heating on the ubiquitous perturbations in a molecular cloud and investigate the possibility of converting them to dense substructures. For this purpose, a small azimuthal perturbation is implemented on the density of an axisymmetric two-dimensional cylindrical cloud, and its evolution is simulated by the technique of two-fluid smoothed particle hydrodynamics. The self-gravity is not included and the initial state has uniform density, temperature and magnetic field, parallel to the axis of cylinder. In addition, all perturbed quantities are assumed to depend only on azimuth angle and time. Computer experiments show that if the ambipolar diffusion heating is ignored, the perturbation will be dispersed over the time. Including the heating due to ambipolar diffusion heats the matter in regions adjacent to the perturbation, thus, leading to the transfer of matter into the perturbed area. In this case, the density of perturbations can be increased. Also, the results of simulations show that an increase of the initial magnetic pressure leads to the intensification of difference between density of perturbations and their surroundings (i.e. increasing of density contrast). This effect is due to the direct relationship of the drift velocity to the intensity of the magnetic field and its gradient. Simulations with different initial uniform densities show that the growth of relative density contrast is more clear with a special density. This result can be explained by the intensification of thermal instability in this special density.


Author(s):  
Noé Brucy ◽  
Patrick Hennebelle

Abstract Self-gravitating disks are believed to play an important role in astrophysics in particular regarding the star and planet formation process. In this context, disks subject to an idealized cooling process, characterized by a cooling timescale β expressed in unit of orbital timescale, have been extensively studied. We take advantage of the Riemann solver and the 3D Godunov scheme implemented in the code Ramses to perform high resolution simulations, complementing previous studies that have used Smoothed Particle Hydrodynamics (SPH) or 2D grid codes. We observe that the critical value of β for which the disk fragments is consistent with most previous results, and is not well converged with resolution. By studying the probability density function of the fluctuations of the column density (∑-PDF), we argue that there is no strict separation between the fragmented and the unfragmented regimes but rather a smooth transition with the probability of apparition of fragments steadily diminishing as the cooling becames less effective. We find that the high column density part of the ∑-PDF follows a simple power law whose slope turns out to be proportional to β and we propose an explanation based on the balance between cooling and heating through gravitational stress. Our explanation suggests that a more efficient cooling requires more heating implying a larger fraction of dense material which, in the absence of characteristic scales, results in a shallower scale-free power law. We propose that the gravitational cascade proceeds in two steps, first the formation of a dense filamentary spiral pattern through a sequence of quasi-static equilibrium triggered by the viscous transport of angular momentum, and second the collapse alongside these filaments that eventually results in the formation of bounded fragments.


Sign in / Sign up

Export Citation Format

Share Document