first stars
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 42)

H-INDEX

64
(FIVE YEARS 4)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 44
Author(s):  
Mario Cirillo ◽  
Luciano Piersanti ◽  
Oscar Straniero

Little is known about the first stars, but hints on this stellar population can be derived from the peculiar chemical composition of the most metal-poor objects in the Milky Way and in resolved stellar populations of nearby galaxies. In this paper, we review the evolution and nucleosynthesis of metal-poor and extremely metal-poor (EMP) stars with low and intermediate masses. In particular, new models of 6 M⊙ with three different levels of metallicity, namely Z=10−4, 10−6 and 10−10, are presented. In addition, we illustrate the results obtained for a 2 M⊙, Z=10−5 model. All these models have been computed by means of the latest version of the FuNS code. We adopted a fully coupled scheme of solutions for the complete set of differential equations describing the evolution of the physical structure and the chemical abundances, as modified by nuclear processes and convective mixing. The scarcity of CNO in the material from which these stars formed significantly affects their evolution, their final fate and their contribution to the chemical pollution of the ISM in primordial galaxies. We show the potential of these models for the interpretation of the composition of EMP stars, with particular emphasis on CEMP stars.


2021 ◽  
pp. 47-75
Author(s):  
Raymond T. Pierrehumbert

‘What are planets made of?’ assesses what planets are made of, beginning by looking at the life cycle of stars, and the kinds of stars which populate the Universe. Although the first stars of the Universe could not have formed planetary systems, the process did not take long to get under way. The Milky Way galaxy formed not long after the Big Bang and has been building its stock of heavy elements ever since. Thus, our Solar System incorporates ingredients from a mix of myriad expired stars, most of which have been processed multiple times through short-lived stars.


2021 ◽  
Vol 30 (14) ◽  
Author(s):  
Hamsa Padmanabhan

The epoch of Cosmic Dawn, when the first stars and galaxies were born, is widely considered as the final frontier of observational cosmology today. Mapping the period between Cosmic Dawn and the present-day provides access to more than 90% of the baryonic (normal) matter in the universe, and unlocks several thousand times more Fourier modes of information than available in today’s cosmological surveys. We review the progress in modeling baryonic gas observations as tracers of the cosmological large-scale structure from Cosmic Dawn to the present day. We illustrate how the description of dark matter haloes can be extended to describe baryonic gas abundances and clustering. This innovative approach allows us to fully utilize our current knowledge of astrophysics to constrain cosmological parameters from future observations. Combined with the information content of multi-messenger probes, this will also elucidate the properties of the first supermassive black holes at Cosmic Dawn. We present a host of fascinating implications for constraining physics beyond the [Formula: see text]CDM model, including tests of the theories of inflation and the cosmological principle, the effects of nonstandard dark matter, and possible deviations from Einstein’s general relativity on the largest scales.


2021 ◽  
Vol 920 (1) ◽  
pp. L22
Author(s):  
Tyrone E. Woods ◽  
Chris J. Willott ◽  
John A. Regan ◽  
John H. Wise ◽  
Turlough P. Downes ◽  
...  
Keyword(s):  

2021 ◽  
Vol 5 (8) ◽  
pp. 736-736
Author(s):  
Paul Woods
Keyword(s):  

Physics ◽  
2021 ◽  
Vol 14 ◽  
Author(s):  
Michael Schirber
Keyword(s):  

2021 ◽  
Vol 503 (4) ◽  
pp. 5868-5876
Author(s):  
Florent Renaud ◽  
Oscar Agertz ◽  
Eric P Andersson ◽  
Justin I Read ◽  
Nils Ryde ◽  
...  

ABSTRACT Using the cosmological zoom simulation VINTERGATAN, we present a new scenario for the onset of star formation at the metal-poor end of the low-[α/Fe] sequence in a Milky Way-like galaxy. In this scenario, the galaxy is fuelled by two distinct gas flows. One is enriched by outflows from massive galaxies, but not the other. While the former feeds the inner galactic region, the latter fuels an outer gas disc, inclined with respect to the main galactic plane, and with a significantly poorer chemical content. The first passage of the last major merger galaxy triggers tidal compression in the outer disc, which increases the gas density and eventually leads to star formation, at a metallicity 0.75 dex lower than the inner galaxy. This forms the first stars of the low-[α/Fe] sequence. These in situ stars have halo-like kinematics, similar to what is observed in the Milky Way, due to the inclination of the outer disc that eventually aligns with the inner one via gravitational torques. We show that this tilting disc scenario is likely to be common in Milky Way-like galaxies. This process implies that the low-[α/Fe] sequence is populated in situ, simultaneously from two formation channels, in the inner and the outer galaxy, with distinct metallicities. This contrasts with purely sequential scenarios for the assembly of the Milky Way disc and could be tested observationally.


2021 ◽  
Vol 503 (2) ◽  
pp. 2014-2032
Author(s):  
Piyush Sharda ◽  
Christoph Federrath ◽  
Mark R Krumholz ◽  
Dominik R G Schleicher

ABSTRACT Magnetic fields play an important role in the dynamics of present-day molecular clouds. Recent work has shown that magnetic fields are equally important for primordial clouds, which form the first stars in the Universe. While the primordial magnetic field strength on cosmic scales is largely unconstrained, theoretical models strongly suggest that a weak seed field existed in the early Universe. We study how the amplification of such a weak field can influence the evolution of accretion discs around first stars, and thus affect the primordial initial mass function (IMF). We perform a suite of 3D ideal magneto-hydrodynamic simulations with different initial field strengths and numerical resolutions. We find that, in simulations with sufficient spatial resolution to resolve the Jeans scale during the collapse, even initially weak magnetic fields grow exponentially to become dynamically important due to both the so-called small-scale turbulent dynamo and the large-scale mean-field dynamo. Capturing the small-scale dynamo action depends primarily on how well we resolve the Jeans length, while capturing the large-scale dynamo depends on the Jeans resolution as well as the maximum absolute resolution. Provided enough resolution, we find that fragmentation does not depend strongly on the initial field strength, because even weak fields grow to become strong. However, fragmentation in runs with magnetic fields differs significantly from those without magnetic fields. We conclude that the development of dynamically strong magnetic fields during the formation of the first stars is likely inevitable, and that these fields had a significant impact on the primordial IMF.


Author(s):  
Alon Banet ◽  
Rennan Barkana ◽  
Anastasia Fialkov ◽  
Or Guttman

Abstract The epoch in which the first stars and galaxies formed is among the most exciting unexplored eras of the Universe. A major research effort is focused on probing this era with the 21-cm spectral line of hydrogen. While most research focuses on statistics like the 21-cm power spectrum or the sky-averaged global signal, there are other ways to analyze tomographic 21-cm maps, which may lead to novel insights. We suggest statistics based on quantiles as a method to probe non-Gaussianities of the 21-cm signal. We show that they can be used in particular to probe the variance, skewness, and kurtosis of the temperature distribution, but are more flexible and robust than these standard statistics. We test these statistics on a range of possible astrophysical models, including different galactic halo masses, star-formation efficiencies, and spectra of the X-ray heating sources, plus an exotic model with an excess early radio background. Simulating data with angular resolution and thermal noise as expected for the Square Kilometre Array (SKA), we conclude that these statistics can be measured out to redshifts above 20 and offer a promising statistical method for probing early cosmic history.


Sign in / Sign up

Export Citation Format

Share Document