scholarly journals Pulsar science with data from the Large European Array for Pulsars

2017 ◽  
Vol 13 (S337) ◽  
pp. 374-375
Author(s):  
James W. McKee

AbstractThe Large European Array for Pulsars (LEAP) is a European Pulsar Timing Array project that combines the Lovell, Effelsberg, Nançay, Sardinia, and Westerbork radio telescopes into a single tied-array, and makes monthly observations of a set of millisecond pulsars (MSPs). The overview of our experiment is presented in Bassa et al. (2016). Baseband data are recorded at a central frequency of 1396 MHz and a bandwidth of 128 MHz at each telescope, and are correlated offline on a cluster at Jodrell Bank Observatory using a purpose-built correlator, detailed in Smits et al. (2017). LEAP offers a substantial increase in sensitivity over that of the individual telescopes, and can operate in timing and imaging modes (notably in observations of the galactic centre radio magnetar; Wucknitz 2015). To date, 4 years of observations have been reduced. Here, we report on the scientific projects which have made use of LEAP data.

2012 ◽  
Vol 8 (S291) ◽  
pp. 180-180 ◽  
Author(s):  
Kuo Liu

AbstractThe European Pulsar Timing Array (EPTA) is one the of three global Pulsar Timing Array communities, aiming to use the clock nature of pulsars to detect gravitational wave. In this talk, I will provide an introduction to the current status of EPTA pulsar observations and present an overview of the recent results. I will also give an update on the progress of the Large European Array for Pulsar (LEAP) project, which attempts to coherently combine the data from the five biggest single site radio telescopes in Europe and make an equivalently 200-metre diameter dish. The LEAP project is an ideal effort in performing high precision pulsar timing and studying characteristics of single pulses from millisecond pulsars.


2017 ◽  
Vol 13 (S337) ◽  
pp. 179-182 ◽  
Author(s):  
Cherry Ng

AbstractThe CHIME telescope (the Canadian Hydrogen Intensity Mapping Experiment) recently built in Penticton, Canada, is currently being commissioned. Originally designed as a cosmology experiment, it was soon recognized that CHIME has the potential to simultaneously serve as an incredibly useful radio telescope for pulsar science. CHIME operates across a wide bandwidth of 400–800 MHz and will have a collecting area and sensitivity comparable to that of the 100-m class radio telescopes. CHIME has a huge field of view of ~250 square degrees. It will be capable of observing 10 pulsars simultaneously, 24-hours per day, every day, while still accomplishing its missions to study Baryon Acoustic Oscillations and Fast Radio Bursts. It will carry out daily monitoring of roughly half of all pulsars in the northern hemisphere, including all NANOGrav pulsars employed in the Pulsar Timing Array project. It will cycle through all pulsars in the northern hemisphere with a range of cadence of no more than 10 days.


2016 ◽  
Vol 458 (3) ◽  
pp. 3341-3380 ◽  
Author(s):  
G. Desvignes ◽  
R. N. Caballero ◽  
L. Lentati ◽  
J. P. W. Verbiest ◽  
D. J. Champion ◽  
...  

2017 ◽  
Vol 4 (5) ◽  
pp. 707-717 ◽  
Author(s):  
George Hobbs ◽  
Shi Dai

Abstract A pulsar timing array (PTA) refers to a program of regular, high-precision timing observations of a widely distributed array of millisecond pulsars. Here we review the status of the three primary PTA projects and the joint International Pulsar Timing Array project. We discuss current results related to ultra-low-frequency gravitational wave searches and highlight opportunities for the near future.


2012 ◽  
Vol 8 (S291) ◽  
pp. 568-570
Author(s):  
Wenming Yan ◽  
R. N. Manchester ◽  
Na Wang

AbstractAs part of the Parkes Pulsar Timing Array (PPTA) project, frequent observations of 20 millisecond pulsars are made using the Parkes 64-m radio telescope. Variations in the mean position angle of the 20 millisecond pulsars can be studied by the PPTA data being recorded in full-polarization mode. We briefly discuss these results.


2012 ◽  
Vol 8 (S291) ◽  
pp. 432-434 ◽  
Author(s):  
Ujjwal Kumar ◽  
Yashwant Gupta ◽  
Willem van Straten ◽  
Stefan Osłowski ◽  
Jayanta Roy ◽  
...  

AbstractWe present the results from nearly three years of monitoring of the variations in dispersion measure (DM) along the line-of-sight to 11 millisecond pulsars using the Giant Metrewave Radio Telescope (GMRT). These results demonstrate accuracies of single epoch DM estimates of the order of 5 × 10−4 cm−3 pc. A preliminary comparison with the Parkes Pulsar Timing Array (PPTA) data shows that the measured DM fluctuations are comparable. We show effects of DM variations due to the solar wind and solar corona and compare with the existing models.


Author(s):  
Caterina Tiburzi

AbstractPulsar Timing Array experiments exploit the clock-like behaviour of an array of millisecond pulsars, with the goal of detecting low-frequency gravitational waves. Pulsar Timing Array experiments have been in operation over the last decade, led by groups in Europe, Australia, and North America. These experiments use the most sensitive radio telescopes in the world, extremely precise pulsar timing models and sophisticated detection algorithms to increase the sensitivity of Pulsar Timing Arrays. No detection of gravitational waves has been made to date with this technique, but Pulsar Timing Array upper limits already contributed to rule out some models of galaxy formation. Moreover, a new generation of radio telescopes, such as the Five hundred metre Aperture Spherical Telescope and, in particular, the Square Kilometre Array, will offer a significant improvement to the Pulsar Timing Array sensitivity. In this article, we review the basic concepts of Pulsar Timing Array experiments, and discuss the latest results from the established Pulsar Timing Array collaborations.


2019 ◽  
Vol 488 (1) ◽  
pp. 868-875 ◽  
Author(s):  
S Osłowski ◽  
R M Shannon ◽  
V Ravi ◽  
J F Kaczmarek ◽  
S Zhang ◽  
...  

ABSTRACT The Parkes Pulsar Timing Array (PPTA) project monitors two dozen millisecond pulsars (MSPs) in order to undertake a variety of fundamental physics experiments using the Parkes 64-m radio telescope. Since 2017 June, we have been undertaking commensal searches for fast radio bursts (FRBs) during the MSP observations. Here, we report the discovery of four FRBs (171209, 180309, 180311, and 180714). The detected events include an FRB with the highest signal-to-noise ratio ever detected at the Parkes Observatory, which exhibits unusual spectral properties. All four FRBs are highly polarized. We discuss the future of commensal searches for FRBs at Parkes.


2015 ◽  
Vol 455 (2) ◽  
pp. 1751-1769 ◽  
Author(s):  
D. J. Reardon ◽  
G. Hobbs ◽  
W. Coles ◽  
Y. Levin ◽  
M. J. Keith ◽  
...  

2016 ◽  
Vol 457 (4) ◽  
pp. 4421-4440 ◽  
Author(s):  
R. N. Caballero ◽  
K. J. Lee ◽  
L. Lentati ◽  
G. Desvignes ◽  
D. J. Champion ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document