scholarly journals Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations

2019 ◽  
Vol 488 (1) ◽  
pp. 868-875 ◽  
Author(s):  
S Osłowski ◽  
R M Shannon ◽  
V Ravi ◽  
J F Kaczmarek ◽  
S Zhang ◽  
...  

ABSTRACT The Parkes Pulsar Timing Array (PPTA) project monitors two dozen millisecond pulsars (MSPs) in order to undertake a variety of fundamental physics experiments using the Parkes 64-m radio telescope. Since 2017 June, we have been undertaking commensal searches for fast radio bursts (FRBs) during the MSP observations. Here, we report the discovery of four FRBs (171209, 180309, 180311, and 180714). The detected events include an FRB with the highest signal-to-noise ratio ever detected at the Parkes Observatory, which exhibits unusual spectral properties. All four FRBs are highly polarized. We discuss the future of commensal searches for FRBs at Parkes.

2017 ◽  
Vol 13 (S337) ◽  
pp. 179-182 ◽  
Author(s):  
Cherry Ng

AbstractThe CHIME telescope (the Canadian Hydrogen Intensity Mapping Experiment) recently built in Penticton, Canada, is currently being commissioned. Originally designed as a cosmology experiment, it was soon recognized that CHIME has the potential to simultaneously serve as an incredibly useful radio telescope for pulsar science. CHIME operates across a wide bandwidth of 400–800 MHz and will have a collecting area and sensitivity comparable to that of the 100-m class radio telescopes. CHIME has a huge field of view of ~250 square degrees. It will be capable of observing 10 pulsars simultaneously, 24-hours per day, every day, while still accomplishing its missions to study Baryon Acoustic Oscillations and Fast Radio Bursts. It will carry out daily monitoring of roughly half of all pulsars in the northern hemisphere, including all NANOGrav pulsars employed in the Pulsar Timing Array project. It will cycle through all pulsars in the northern hemisphere with a range of cadence of no more than 10 days.


2012 ◽  
Vol 8 (S291) ◽  
pp. 568-570
Author(s):  
Wenming Yan ◽  
R. N. Manchester ◽  
Na Wang

AbstractAs part of the Parkes Pulsar Timing Array (PPTA) project, frequent observations of 20 millisecond pulsars are made using the Parkes 64-m radio telescope. Variations in the mean position angle of the 20 millisecond pulsars can be studied by the PPTA data being recorded in full-polarization mode. We briefly discuss these results.


2012 ◽  
Vol 8 (S291) ◽  
pp. 432-434 ◽  
Author(s):  
Ujjwal Kumar ◽  
Yashwant Gupta ◽  
Willem van Straten ◽  
Stefan Osłowski ◽  
Jayanta Roy ◽  
...  

AbstractWe present the results from nearly three years of monitoring of the variations in dispersion measure (DM) along the line-of-sight to 11 millisecond pulsars using the Giant Metrewave Radio Telescope (GMRT). These results demonstrate accuracies of single epoch DM estimates of the order of 5 × 10−4 cm−3 pc. A preliminary comparison with the Parkes Pulsar Timing Array (PPTA) data shows that the measured DM fluctuations are comparable. We show effects of DM variations due to the solar wind and solar corona and compare with the existing models.


2017 ◽  
Vol 13 (S337) ◽  
pp. 392-393
Author(s):  
D. Perrodin ◽  
M. Burgay ◽  
A. Corongiu ◽  
M. Pilia ◽  
A. Possenti ◽  
...  

AbstractThe Sardinia Radio Telescope (SRT) is a modern, fully-steerable 64-m dish located in San Basilio, Sardinia (Italy). It is characterized by an active surface that allows it to cover a wide range of radio frequencies (300 MHz to 100 GHz). During SRT’s commissioning phase, we installed the hardware and software needed for pulsar observations. Since then, SRT has taken part in Large European Array for Pulsars and European Pulsar Timing Array observations for the purpose of gravitational wave detection. We have installed a new S-band receiver that will allow us to search for pulsars in the Galactic Center. We also plan to combine our efforts to search for Extraterrestrial Intelligence (SETI) with the search for pulsars and Fast Radio Bursts.


2016 ◽  
Vol 458 (3) ◽  
pp. 3341-3380 ◽  
Author(s):  
G. Desvignes ◽  
R. N. Caballero ◽  
L. Lentati ◽  
J. P. W. Verbiest ◽  
D. J. Champion ◽  
...  

2017 ◽  
Vol 4 (5) ◽  
pp. 707-717 ◽  
Author(s):  
George Hobbs ◽  
Shi Dai

Abstract A pulsar timing array (PTA) refers to a program of regular, high-precision timing observations of a widely distributed array of millisecond pulsars. Here we review the status of the three primary PTA projects and the joint International Pulsar Timing Array project. We discuss current results related to ultra-low-frequency gravitational wave searches and highlight opportunities for the near future.


2011 ◽  
Vol 418 (2) ◽  
pp. 1258-1271 ◽  
Author(s):  
S. Osłowski ◽  
W. van Straten ◽  
G. B. Hobbs ◽  
M. Bailes ◽  
P. Demorest

Author(s):  
Cherie K. Day ◽  
Adam T. Deller ◽  
Clancy W. James ◽  
Emil Lenc ◽  
Shivani Bhandari ◽  
...  

Abstract The recent increase in well-localised fast radio bursts (FRBs) has facilitated in-depth studies of global FRB host properties, the source circumburst medium, and the potential impacts of these environments on the burst properties. The Australian Square Kilometre Array Pathfinder (ASKAP) has localised 11 FRBs with sub-arcsecond to arcsecond precision, leading to sub-galaxy localisation regions in some cases and those covering much of the host galaxy in others. The method used to astrometrically register the FRB image frame for ASKAP, in order to align it with images taken at other wavelengths, is currently limited by the brightness of continuum sources detected in the short-duration (‘snapshot’) voltage data captured by the Commensal Real-Time ASKAP Fast Transients (CRAFT) software correlator, which are used to correct for any frame offsets due to imperfect calibration solutions and estimate the accuracy of any required correction. In this paper, we use dedicated observations of bright, compact radio sources in the low- and mid-frequency bands observable by ASKAP to investigate the typical astrometric accuracy of the positions obtained using this so-called ‘snapshot’ technique. Having captured these data with both the CRAFT software and ASKAP hardware correlators, we also compare the offset distributions obtained from both data products to estimate a typical offset between the image frames resulting from the differing processing paths, laying the groundwork for future use of the longer duration, higher signal-to-noise ratio (S/N) data recorded by the hardware correlator. We find typical offsets between the two frames of ${\sim}0.6$ and ${\sim}0.3$ arcsec in the low- and mid-band data, respectively, for both RA and Dec. We also find reasonable agreement between our offset distributions and those of the published FRBs. We detect only a weak dependence in positional offset on the relative separation in time and elevation between target and calibrator scans, with the trends being more pronounced in the low-band data and in Dec. Conversely, the offsets show a clear dependence on frequency in the low band, which we compare to the frequency-dependent Dec. offsets found in FRB 200430. In addition, we present a refined methodology for estimating the overall astrometric accuracy of CRAFT FRBs.


2009 ◽  
Vol 5 (H15) ◽  
pp. 131-136
Author(s):  
Duncan R. Lorimer ◽  
Maura A. McLaughlin

AbstractPulsars provide a wealth of information about General Relativity, the equation of state of superdense matter, relativistic particle acceleration in high magnetic fields, the Galaxy's interstellar medium and magnetic field, stellar and binary evolution, celestial mechanics, planetary physics and even cosmology. The wide variety of physical applications currently being investigated through studies of radio pulsars rely on: (i) finding interesting objects to study via large-scale and targeted surveys; (ii) high-precision timing measurements which exploit their remarkable clock-like stability. We review current surveys and the principles of pulsar timing and highlight progress made in the rotating radio transients, intermittent pulsars, tests of relativity, understanding pulsar evolution, measuring neutron star masses and the pulsar timing array


2017 ◽  
Vol 13 (S337) ◽  
pp. 374-375
Author(s):  
James W. McKee

AbstractThe Large European Array for Pulsars (LEAP) is a European Pulsar Timing Array project that combines the Lovell, Effelsberg, Nançay, Sardinia, and Westerbork radio telescopes into a single tied-array, and makes monthly observations of a set of millisecond pulsars (MSPs). The overview of our experiment is presented in Bassa et al. (2016). Baseband data are recorded at a central frequency of 1396 MHz and a bandwidth of 128 MHz at each telescope, and are correlated offline on a cluster at Jodrell Bank Observatory using a purpose-built correlator, detailed in Smits et al. (2017). LEAP offers a substantial increase in sensitivity over that of the individual telescopes, and can operate in timing and imaging modes (notably in observations of the galactic centre radio magnetar; Wucknitz 2015). To date, 4 years of observations have been reduced. Here, we report on the scientific projects which have made use of LEAP data.


Sign in / Sign up

Export Citation Format

Share Document