Globular cluster system of NGC 3613, a massive elliptical galaxy in a poor environment

2019 ◽  
Vol 14 (S351) ◽  
pp. 84-88
Author(s):  
Bruno J. De Bórtoli ◽  
Lilia P. Bassino ◽  
Juan P. Caso ◽  
Ana I. Ennis

AbstractWe present an analysis of the globular cluster system (GCS) of the galaxy NGC 3613, an intrinsically bright elliptical galaxy (MV = −21.5) in a low density environment (it is the central galaxy of a group of a dozen galaxies). Based on Gemini/GMOS photometry of NGC 3613 we obtained the following properties for this GCS. A ‘blue tilt’ is detected in the colour-magnitude diagram. The colour distribution is bimodal, presenting the two classical globular cluster (GC) sub-populations. The spatial and azimuthal projected distributions show that red sub-population correlates with the stellar component of the host galaxy.

2020 ◽  
Vol 492 (3) ◽  
pp. 4313-4324 ◽  
Author(s):  
Bruno J De Bórtoli ◽  
Lilia P Bassino ◽  
Juan P Caso ◽  
Ana I Ennis

ABSTRACT We present the first photometric study of the globular cluster system (GCS) of the E galaxy NGC 3613 (MV = −21.5, d ∼ 30.1 Mpc), as well as the surface photometry of the host galaxy, based on Gemini/GMOS images. Being considered the central galaxy of a group, NGC 3613 inhabits a low-density environment although its intrinsic brightness is similar to the expected one for galaxies in the centre of clusters. The following characteristics are obtained for this GCS. The colour distribution is bimodal, with metal-poor globular clusters (GCs) getting slightly bluer with increasing radius. The radial and azimuthal projected distributions show that metal-rich GCs are more concentrated towards the host galaxy and trace its light distribution very precisely, while metal-poor GCs present a more extended and uniform distribution. The GC luminosity function helps validate the adopted distance. The estimated total GC population of Ntot = 2075 ± 130 leads to a specific frequency SN = 5.2 ± 0.7, a value within the expected range for GCSs with host galaxies of similar luminosity. The surface photometry of NGC 3613 reveals a three-component profile and a noticeable substructure. Finally, a small sample of ultracompact dwarf candidates are identified in the surroundings of the host galaxy.


2019 ◽  
Vol 14 (S351) ◽  
pp. 60-63
Author(s):  
J. P. Caso ◽  
Lilia P. Bassino ◽  
T. Richtler ◽  
R. Salinas

AbstractWe summarize the results from a study of the globular cluster (GC) system of the isolated elliptical galaxy NGC 6411, based on Gemini/GMOS g', r', i’ photometry. The extent of the globular cluster system is about 70 kpc. It contains ≍700 members. The colour distribution and luminosity function are typical of old GC systems. An excess of bright GCs with intermediate colours might evidence an intermediate-age merger.


Galaxies ◽  
2017 ◽  
Vol 5 (3) ◽  
pp. 30 ◽  
Author(s):  
Ana Ennis ◽  
Lilia Bassino ◽  
Juan Caso

1993 ◽  
Vol 402 ◽  
pp. L53 ◽  
Author(s):  
Emilio J. Alfaro ◽  
Jesus Cabrera-Cano ◽  
Antonio J. Delgado

1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


2007 ◽  
Vol 3 (S246) ◽  
pp. 394-402
Author(s):  
Stephen E. Zepf

AbstractThis paper reviews some of the observational properties of globular cluster systems, with a particular focus on those that constrain and inform models of the formation and dynamical evolution of globular cluster systems. I first discuss the observational determination of the globular cluster luminosity and mass function. I show results from new very deep HST data on the M87 globular cluster system, and discuss how these constrain models of evaporation and the dynamical evolution of globular clusters. The second subject of this review is the question of how to account for the observed constancy of the globular cluster mass function with distance from the center of the host galaxy. The problem is that a radial trend is expected for isotropic cluster orbits, and while the orbits are observed to be roughly isotropic, no radial trend in the globular cluster system is observed. I review three extant proposals to account for this, and discuss observations and calculations that might determine which of these is most correct. The final subject is the origin of the very weak mass-radius relation observed for globular clusters. I discuss how this strongly constrains how globular clusters form and evolve. I also note that the only viable current proposal to account for the observed weak mass-radius relation naturally effects the globular cluster mass function, and that these two problems may be closely related.


1988 ◽  
Vol 126 ◽  
pp. 641-642
Author(s):  
Natarajan Ramamani

This paper describes a project whose aim is to study the dynamics of a globular cluster system using an N-body code modified to include the gravitational field of an isothermal galaxy model. The galaxy and the globular cluster system have the same radii, are spherically symmetric and non-rotating. The evolution is to be followed up to a Hubble time.


2001 ◽  
Vol 121 (4) ◽  
pp. 1992-2002 ◽  
Author(s):  
Juan C. Forte ◽  
Doug Geisler ◽  
Pablo G. Ostrov ◽  
Andrés E. Piatti ◽  
Wolfgang Gieren

Sign in / Sign up

Export Citation Format

Share Document