galaxy model
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
C. Tortora ◽  
N. R. Napolitano

Dark matter (DM) is predicted to be the dominant mass component in galaxies. In the central region of early-type galaxies it is expected to account for a large amount of the total mass, although the stellar mass should still represent the majority of the mass budget, depending on the stellar initial mass function (IMF). We discuss latest results on the DM fraction and mean DM density for local galaxies and explore their evolution with redshifts in the last 8 Gyr of the cosmic history. We compare these results with expectations from the ΛCDM model and discuss the role of the IMF and galaxy model through the central total mass density slope. We finally present future perspectives offered by next-generation instruments/surveys (Rubin/LSST, Euclid, CSST, WEAVE, 4MOST, and DESI), which will provide the unique chance to measure the DM evolution with time for an unprecedented number of galaxies and constrain their evolutionary scenario.


Author(s):  
Nada El-Falou ◽  
Jeremy J Webb

Abstract The tidal tails of globular clusters have been shown to be sensitive to the external tidal field. We investigate how Galactic globular clusters with observed tails are affected by satellite dwarf galaxies by simulating tails in galaxy models with and without dwarf galaxies. The simulations indicate that tidal tails can be subdivided into into three categories based on how they are affected by dwarf galaxies: 1) dwarf galaxies perturb the progenitor cluster’s orbit (NGC 4590, Pal 1, Pal 5), 2) dwarf galaxies perturb the progenitor cluster’s orbit and individual tail stars (NGC 362, NGC 1851, NGC 4147, NGC 5466, NGC 7492, Pal 14, Pal 15), and 3) dwarf galaxies negligibly affect tidal tails (NGC 288, NGC 5139, NGC 5904, Eridanus). Perturbations to a cluster’s orbit occur when dwarf galaxies pass within its orbit, altering the size and shape of the orbital and tail path. Direct interactions between one or more dwarf galaxies and tail stars lead to kinks and spurs, however we find that features are more difficult to observe in projection. We further find that the tails of Pal 5 are shorter in the galaxy model with dwarf galaxies as it is closer to apocentre, which results in the tails being compressed. Additional simulations reveal that differences between tidal tails in the two galaxy models are primarily due to the Large Magellanic Cloud. Understanding how dwarf galaxies affect tidal tails allows for tails to be used to map the distribution of matter in dwarf galaxies and the Milky Way.


2021 ◽  
Vol 920 (1) ◽  
pp. 61
Author(s):  
H. I. Alrebdi ◽  
Fredy L. Dubeibe ◽  
Euaggelos E. Zotos

Author(s):  
N. Lagarde ◽  
C. Reylé ◽  
C. Chiappini ◽  
R. Mor ◽  
F. Anders ◽  
...  
Keyword(s):  

2021 ◽  
Vol 24 ◽  
pp. S214
Author(s):  
S. Shukla ◽  
D. Shah ◽  
A. Martin ◽  
N.A. Risebrough ◽  
R. Kendall ◽  
...  

Author(s):  
Ines Ben Messaoud ◽  
Abdulrahman A. Alshdadi ◽  
Jamel Feki

The traditional data warehousing approaches should adapt to take into consideration novel needs and data structures. In this context, NoSQL technology is progressively gaining a place in the research and industry domains. This paper proposes an approach for building a NoSQL document-oriented warehouse (DocW). This approach has two methods, namely 1) document warehouse builder and 2) NoSQL-Converter. The first method generates the DocW schema as a galaxy model whereas the second one translates the generated galaxy into a document-oriented NoSQL model. This relies on two types of rules: structure and hierarchical rules. Furthermore, in order to help understanding the textual results of analytical queries on the NoSQL-DocW, the authors define two semantic operators S-Drill-Up and S-Drill-Down to aggregate/expand the terms of query. The implementation of our proposals uses MangoDB and Talend. The experiment uses the medical collection Clef-2007 and two metrics called write request latency and read request latency to evaluate respectively the loading time and the response time to queries.


2021 ◽  
Vol 648 ◽  
pp. A116
Author(s):  
F. Combes ◽  
N. Gupta ◽  
S. Muller ◽  
S. Balashev ◽  
G. I. G. Józsa ◽  
...  

The Large Survey Project (LSP) “MeerKAT Absorption Line Survey” (MALS) is a blind H I 21 cm and OH 18 cm absorption line survey in the L- and UHF-bands, primarily designed to better determine the occurrence of atomic and molecular gas in the circumgalactic and intergalactic medium, and its redshift evolution. Here we present the first results using the UHF band obtained towards the strongly lensed radio source PKS 1830−211, revealing the detection of absorption produced by the lensing galaxy. With merely 90 min of data acquired on-source for science verification and processed using the Automated Radio Telescope Imaging Pipeline (ARTIP), we detect in absorption the known H I 21 cm and OH 18 cm main lines at z = 0.89 at an unprecedented signal-to-noise ratio (4000 in the continuum, in each 6 km s−1 wide channel). For the first time we report the detection of OH satellite lines at z = 0.89, which until now have not been detected at z > 0.25. We decompose the OH lines into a thermal and a stimulated contribution, where the 1612 and 1720 MHz lines are conjugate. The total OH 1720 MHz emission line luminosity is 6100 L⊙. This is the most luminous known 1720 MHz maser line and is also among the most luminous of the OH main line megamasers. The absorption components of the different images of the background source sample different light paths in the lensing galaxy, and their weights in the total absorption spectrum are expected to vary in time on daily and monthly time scales. We compare our normalized spectra with those obtained more than 20 years ago, and find no variation. We interpret the absorption spectra with the help of a lens galaxy model derived from an N-body hydrodynamical simulation, with a morphology similar to its optical HST image. The resulting absorption lines depend mainly on the background continuum and the radial distribution of the gas surface density for each atomic and molecular species. We show that it is possible to reproduce the observations assuming a realistic spiral galaxy disk without invoking any central gas outflows. However, there are distinct and faint high-velocity features in the ALMA millimeter absorption spectra that most likely originate from high-velocity clouds or tidal features. These clouds may contribute to broaden the H I and OH spectra.


2021 ◽  
Vol 503 (3) ◽  
pp. 4136-4146
Author(s):  
Anneya Golob ◽  
Marcin Sawicki ◽  
Andy D Goulding ◽  
Jean Coupon

ABSTRACT Classifying catalogue objects as stars, galaxies, or active galactic nuclei (AGNs) is a crucial part of any statistical study of galaxies. We describe our pipeline for binary (star/galaxy) and multiclass (star/galaxy/Type I AGN/Type II AGN) classification developed for the very deep CLAUDS + HSC-SSP u*grizy data set. Our method uses the XGBoost implementation of gradient boosted trees (GBTs) to train ensembles of models that take photometry, colours, maximum surface brightnesses, and effective radii from all available bands as input, and output the probability that an object belongs to each of the classes under consideration. At iAB < 25 our binary star/galaxy model has AUC = 0.9974 and at the threshold that maximizes our sample’s weighted F1 score, selects a sample of galaxies with 99.7 per cent purity and 99.8 per cent completeness. We test the model’s ability to generalize to objects fainter than those seen during training and find that extrapolation of ∼1−2 mag is reasonable for most applications provided that the galaxies in the training sample are representative of the range of redshifts and colours of the galaxies in the target sample. We also perform an exploratory analysis of the method’s ability to identify AGNs using a small X-ray-selected sample and find that it holds promise for classifying Type I AGN, although it performs less well for Type II AGN. Our results demonstrate that GBTs provide a flexible, robust, and efficient method for performing classification of catalogue objects in large astronomical imaging surveys.


2020 ◽  
Vol 500 (4) ◽  
pp. 5043-5055
Author(s):  
J A Sellwood ◽  
R G Carlberg

ABSTRACT We present a study of the spiral responses in a stable disc galaxy model to co-orbiting perturbing masses that are evenly spaced around rings. The amplitudes of the responses, or wakes, are proportional to the masses of the perturbations, and we find that the response to a low-mass ring disperses when it is removed – behaviour that is predicted by linear theory. Higher mass rings cause non-linear changes through scattering at the major resonances, provoking instabilities that were absent before the scattering took place. The separate wake patterns from two rings orbiting at differing frequencies produce a net response that is an apparently shearing spiral. When the rings have low mass, the evolution of the simulation is both qualitatively and quantitatively reproduced by linear superposition of the two separate responses. We argue that apparently shearing transient spirals in simulations result from the superposition of two or more steadily rotating patterns, each of which is best accounted for as a normal mode of the non-smooth disc.


Sign in / Sign up

Export Citation Format

Share Document