scholarly journals THE PREHISTORY OF THE SUBSYSTEMS OF SECOND-ORDER ARITHMETIC

2017 ◽  
Vol 10 (2) ◽  
pp. 357-396 ◽  
Author(s):  
WALTER DEAN ◽  
SEAN WALSH

AbstractThis paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program promoted by Friedman and Simpson. We look in particular at: (i) the long arc from Poincaré to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak König’s Lemma, and (iv) the large-scale intellectual backdrop to arithmetical transfinite recursion in descriptive set theory and its effectivization by Borel, Lusin, Addison, and others.

2009 ◽  
Vol 74 (1) ◽  
pp. 349-360 ◽  
Author(s):  
Stephen Binns ◽  
Bjørn Kjos-Hanssen

AbstractWe consider two axioms of second-order arithmetic. These axioms assert, in two different ways, that infinite but narrow binary trees always have infinite paths. We show that both axioms are strictly weaker than Weak König's Lemma, and incomparable in strength to the dual statement (WWKL) that wide binary trees have paths.


1984 ◽  
Vol 49 (3) ◽  
pp. 783-802 ◽  
Author(s):  
Stephen G. Simpson

AbstractWe investigate the provability or nonprovability of certain ordinary mathematical theorems within certain weak subsystems of second order arithmetic. Specifically, we consider the Cauchy/Peano existence theorem for solutions of ordinary differential equations, in the context of the formal system RCA0 whose principal axioms are comprehension and induction. Our main result is that, over RCA0, the Cauchy/Peano Theorem is provably equivalent to weak König's lemma, i.e. the statement that every infinite {0, 1}-tree has a path. We also show that, over RCA0, the Ascoli lemma is provably equivalent to arithmetical comprehension, as is Osgood's theorem on the existence of maximum solutions. At the end of the paper we digress to relate our results to degrees of unsolvability and to computable analysis.


1994 ◽  
Vol 59 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Stephen G. Simpson

AbstractLet CKDT be the assertion that for every countably infinite bipartite graph G, there exist a vertex covering C of G and a matching M in G such that C consists of exactly one vertex from each edge in M. (This is a theorem of Podewski and Stefifens [12].) Let ATR0 be the subsystem of second-order arithmetic with arithmetical transfinite recursion and restricted induction. Let RCA0 be the subsystem of second-order arithmetic with recursive comprehension and restricted induction. We show that CKDT is provable in ATR0. Combining this with a result of Aharoni, Magidor, and Shore [2], we see that CKDT is logically equivalent to the axioms of ATR0, the equivalence being provable in RCA0.


Author(s):  
Gerhard Jäger

AbstractThis short note is on the question whether the intersection of all fixed points of a positive arithmetic operator and the intersection of all its closed points can proved to be equivalent in a weak fragment of second order arithmetic.


2014 ◽  
Vol 79 (4) ◽  
pp. 1001-1019 ◽  
Author(s):  
ASHER M. KACH ◽  
ANTONIO MONTALBÁN

AbstractMany classes of structures have natural functions and relations on them: concatenation of linear orders, direct product of groups, disjoint union of equivalence structures, and so on. Here, we study the (un)decidability of the theory of several natural classes of structures with appropriate functions and relations. For some of these classes of structures, the resulting theory is decidable; for some of these classes of structures, the resulting theory is bi-interpretable with second-order arithmetic.


Sign in / Sign up

Export Citation Format

Share Document