scholarly journals Finding paths through narrow and wide trees

2009 ◽  
Vol 74 (1) ◽  
pp. 349-360 ◽  
Author(s):  
Stephen Binns ◽  
Bjørn Kjos-Hanssen

AbstractWe consider two axioms of second-order arithmetic. These axioms assert, in two different ways, that infinite but narrow binary trees always have infinite paths. We show that both axioms are strictly weaker than Weak König's Lemma, and incomparable in strength to the dual statement (WWKL) that wide binary trees have paths.

2017 ◽  
Vol 10 (2) ◽  
pp. 357-396 ◽  
Author(s):  
WALTER DEAN ◽  
SEAN WALSH

AbstractThis paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program promoted by Friedman and Simpson. We look in particular at: (i) the long arc from Poincaré to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak König’s Lemma, and (iv) the large-scale intellectual backdrop to arithmetical transfinite recursion in descriptive set theory and its effectivization by Borel, Lusin, Addison, and others.


1984 ◽  
Vol 49 (3) ◽  
pp. 783-802 ◽  
Author(s):  
Stephen G. Simpson

AbstractWe investigate the provability or nonprovability of certain ordinary mathematical theorems within certain weak subsystems of second order arithmetic. Specifically, we consider the Cauchy/Peano existence theorem for solutions of ordinary differential equations, in the context of the formal system RCA0 whose principal axioms are comprehension and induction. Our main result is that, over RCA0, the Cauchy/Peano Theorem is provably equivalent to weak König's lemma, i.e. the statement that every infinite {0, 1}-tree has a path. We also show that, over RCA0, the Ascoli lemma is provably equivalent to arithmetical comprehension, as is Osgood's theorem on the existence of maximum solutions. At the end of the paper we digress to relate our results to degrees of unsolvability and to computable analysis.


Author(s):  
Gerhard Jäger

AbstractThis short note is on the question whether the intersection of all fixed points of a positive arithmetic operator and the intersection of all its closed points can proved to be equivalent in a weak fragment of second order arithmetic.


2014 ◽  
Vol 79 (4) ◽  
pp. 1001-1019 ◽  
Author(s):  
ASHER M. KACH ◽  
ANTONIO MONTALBÁN

AbstractMany classes of structures have natural functions and relations on them: concatenation of linear orders, direct product of groups, disjoint union of equivalence structures, and so on. Here, we study the (un)decidability of the theory of several natural classes of structures with appropriate functions and relations. For some of these classes of structures, the resulting theory is decidable; for some of these classes of structures, the resulting theory is bi-interpretable with second-order arithmetic.


1998 ◽  
Vol 5 (41) ◽  
Author(s):  
Ulrich Kohlenbach

The weak König's lemma WKL is of crucial significance in the study of fragments of mathematics which on the one hand are mathematically strong but on the other hand have a low proof-theoretic and computational strength. In addition to the restriction to binary trees (or equivalently bounded trees), WKL<br />is also `weak' in that the tree predicate is quantifier-free. Whereas in general the computational and proof-theoretic strength increases when logically more complex trees are allowed, we show that this is not the case for trees which are<br />given by formulas in a class Phi where we allow an arbitrary function quantifier prefix over bounded functions in front of a Pi^0_1-formula. This results in a schema Phi-WKL.<br />Another way of looking at WKL is via its equivalence to the principle<br /> For all x there exists y<=1 for all z A0(x; y; z) -> there exists f <= lambda x.1 for all x, z A0(x, fx, z);<br />where A0 is a quantifier-free formula (x, y, z are natural number variables). <br /> We generalize this to Phi-formulas as well and allow function quantifiers `there exists g <= s'<br />instead of `there exists y <= 1', where g <= s is defined pointwise. The resulting schema is called Phi-b-AC^0,1.<br />In the absence of functional parameters (so in particular in a second order context), the corresponding versions of Phi-WKL and Phi-b-AC^0,1 turn out to<br />be equivalent to WKL. This changes completely in the presence of functional<br />variables of type 2 where we get proper hierarchies of principles Phi_n-WKL and<br />Phi_n-b-AC^0,1. Variables of type 2 however are necessary for a direct representation<br />of analytical objects and - sometimes - for a faithful representation of<br />such objects at all as we will show in a subsequent paper. By a reduction of<br />Phi-WKL and Phi-b-AC^0,1 to a non-standard axiom F (introduced in a previous paper) and a new elimination result for F relative to various fragment of arithmetic in all finite types, we prove that Phi-WKL and Phi-b-AC^0,1 do<br />neither contribute to the provably recursive functionals of these fragments nor to their proof-theoretic strength. In a subsequent paper we will illustrate the greater mathematical strength of these principles (compared to WKL).


Sign in / Sign up

Export Citation Format

Share Document