scholarly journals On the solution of certain dual integral equations

1963 ◽  
Vol 6 (1) ◽  
pp. 39-44 ◽  
Author(s):  
J. Burlak

1. In this note we consider the formal solution of the dual integral equationswhere f(x) and g(x) are given and χ(x) is to be found. The direct solution of these equations has been given by Noble [1] but we shall show that they may be solved more easily if they are first reduced to a form in which g(x) ≡ 0.

1960 ◽  
Vol 4 (3) ◽  
pp. 108-110 ◽  
Author(s):  
Ian N. Sneddon

When the theory of Hankel transforms is applied to the solution of certain mixed boundary value problems in mathematical physics, the problems are reduced to the solution of dual integral equations of the typewhere α and ν are prescribed constants and f(ρ) is a prescribed function of ρ [1]. The formal solution of these equations was first derived by Titchmarsh [2]. The method employed by Titchmarsh in deriving the solution in the general case is difficult, involving the theory of Mellin transforms and what is essentially a Wiener-Hopf procedure. In lecturing to students on this subject one often feels the need for an elementary solution of these equations, especially in the cases α = ± 1, ν = 0. That such an elementary solution exists is suggested by Copson's solution [3] of the problem of the electrified disc which corresponds to the case α = –l, ν = 0. A systematic use of a procedure similar to Copson's has in fact been made by Noble [4] to find the solution of a pair of general dual integral equations, but again the analysis is involved and long. The object of the present note is to give a simple solution of the pairs of equations which arise most frequently in physical applications. The method of solution was suggested by a procedure used by Lebedev and Uflyand [5] in the solution of a much more general problem.


1962 ◽  
Vol 14 ◽  
pp. 685-693 ◽  
Author(s):  
A. Erdélyi ◽  
I. N. Sneddon

In the analysis of mixed boundary value problems by the use of Hankel transforms we often encounter pairs of dual integral equations which can be written in the symmetrical form(1.1)Equations of this type seem to have been formulated first by Weber in his paper (1) in which he derives (by inspection) the solution for the case in which α — β = ½, v = 0, F ≡ 1, G ≡ 0.The first direct solution of a pair of equations of this type was given by Beltrami (2) for the same values of α— β and v with G(p) ≡ 0 but with F(ρ) arbitrary.


1958 ◽  
Vol 11 (2) ◽  
pp. 115-126 ◽  
Author(s):  
B. Noble

The classic application of dual integral equations occurs in connexion with the potential of a circular disc (e.g. Titchmarsh (9), p. 334). Suppose that the disc lies in z = 0, 0≤ρ≤1, where we use cylindrical coordinates (p, z). Then it is required to find a solution ofsuch that on z = 0Separation of variables in conjunction with the conditions that ø is finite on the axis and ø tends to zero as z tends to plus infinity yields the particular solution.


1966 ◽  
Vol 15 (1) ◽  
pp. 73-74
Author(s):  
J. S. Lowndes

Consider the dual equationswhere


1969 ◽  
Vol 16 (3) ◽  
pp. 185-194 ◽  
Author(s):  
V. Hutson

Consider the Fredholm equation of the second kindwhereand Jv is the Bessel function of the first kind. Here ka(t) and h(x) are given, the unknown function is f(x), and the solution is required for large values of the real parameter a. Under reasonable conditions the solution of (1.1) is given by its Neumann series (a set of sufficient conditions on ka(t) for the convergence of this series is given in Section 4, Lemma 2). However, in many applications the convergence of the series becomes too slow as a→∞ for any useful results to be obtained from it, and it may even happen that f(x)→∞ as a→∞. It is the aim of the present investigation to consider this case, and to show how under fairly general conditions on ka(t) an approximate solution may be obtained for large a, the approximation being valid in the norm of L2(0, 1). The exact conditions on ka(t) and the main result are given in Section 4. Roughly, it is required that 1 -ka(at) should behave like tp(p>0) as t→0. For example, ka(at) might be exp ⌈-(t/ap)⌉.


1962 ◽  
Vol 13 (2) ◽  
pp. 179-187 ◽  
Author(s):  
J. Burlak

Dual integral equations of the formwhere f(x) and g(x) are given functions, ψ(x) is unknown, k≧0, μ, v and α are real constants, have applications to diffraction theory and also to dynamical problems in elasticity. The special cases v = −μ, α = 0 and v = μ = 0, 0<α2<1 were treated by Ahiezer (1). More recently, equations equivalent to the above were solved by Peters (2) who adapted a method used earlier by Gordon (3) for treating the (extensively studied) case μ = v, k = 0.


1973 ◽  
Vol 14 (1) ◽  
pp. 73-76
Author(s):  
J. S. Lowndes

Lowengrub [l] has considered simultaneous dual integral equations of the formwhere i = 1,2 …n, I1= {x:0 ≦ x x <1}, I2 {= x:0 ≦ x >1}, the cIJ are constants, the f1(x) are known functions and the functions φ(x) are to be determined.denotes the modified operator of the Hankel transform with the inversion formula


Author(s):  
B. Noble

In this paper we first of all consider the dual integral equationswhere f(ρ), g(ρ) are given, A(t) is unknown, and α is a given constant. This system, with g(ρ) = 0, was originally considered by Titchmarsh ((13), p. 337), and Busbridge (1), who obtained a solution by the use of Mellin transforms and analytic continuation in the complex plane. The method described in this paper involves the application of certain multiplying factors to the equations. In the present case it is relatively easy to guess the multiplying factors and then the method is essentially a real-variable technique. It is presented in this way in § 2 below.


1961 ◽  
Vol 5 (1) ◽  
pp. 21-24 ◽  
Author(s):  
E. T. Copson

In his book on Fourier Integrals, Titchmarsh [l] gave the solution of the dual integral equationsfor the case α > 0, by some difficult analysis involving the theory of Mellin transforms. Sneddon [2] has recently shown that, in the cases v = 0, α = ±½, the problem can be reduced to an Abel integral equation by making the substitutionorIt is the purpose of this note to show that the general case can be dealt with just as simply by puttingThe analysis is formal: no attempt is made to supply details of rigour.


1967 ◽  
Vol 63 (1) ◽  
pp. 171-178 ◽  
Author(s):  
R. K. Saxena

AbstractThe problem discussed is the formal solution of certain dual integral equations involving H-functions. The method followed is that of fractional integration. The given dual integral equations have been transformed, by the application of fractional integration operators, into two others with a common kernel and the problem is then reduced to solving one integral equation. In the first case the common kernel comes out to be a symmetrical Fourier kernel given earlier by Fox and the formal solution is then immediate. In the second case the common kernel is a generalized Fourier kernel and dual integral equations of this type have recently been studied by Fox.


Sign in / Sign up

Export Citation Format

Share Document