scholarly journals On Certain Dual Integral Equations

1961 ◽  
Vol 5 (1) ◽  
pp. 21-24 ◽  
Author(s):  
E. T. Copson

In his book on Fourier Integrals, Titchmarsh [l] gave the solution of the dual integral equationsfor the case α > 0, by some difficult analysis involving the theory of Mellin transforms. Sneddon [2] has recently shown that, in the cases v = 0, α = ±½, the problem can be reduced to an Abel integral equation by making the substitutionorIt is the purpose of this note to show that the general case can be dealt with just as simply by puttingThe analysis is formal: no attempt is made to supply details of rigour.

1969 ◽  
Vol 16 (3) ◽  
pp. 185-194 ◽  
Author(s):  
V. Hutson

Consider the Fredholm equation of the second kindwhereand Jv is the Bessel function of the first kind. Here ka(t) and h(x) are given, the unknown function is f(x), and the solution is required for large values of the real parameter a. Under reasonable conditions the solution of (1.1) is given by its Neumann series (a set of sufficient conditions on ka(t) for the convergence of this series is given in Section 4, Lemma 2). However, in many applications the convergence of the series becomes too slow as a→∞ for any useful results to be obtained from it, and it may even happen that f(x)→∞ as a→∞. It is the aim of the present investigation to consider this case, and to show how under fairly general conditions on ka(t) an approximate solution may be obtained for large a, the approximation being valid in the norm of L2(0, 1). The exact conditions on ka(t) and the main result are given in Section 4. Roughly, it is required that 1 -ka(at) should behave like tp(p>0) as t→0. For example, ka(at) might be exp ⌈-(t/ap)⌉.


Author(s):  
B. Noble

In this paper we first of all consider the dual integral equationswhere f(ρ), g(ρ) are given, A(t) is unknown, and α is a given constant. This system, with g(ρ) = 0, was originally considered by Titchmarsh ((13), p. 337), and Busbridge (1), who obtained a solution by the use of Mellin transforms and analytic continuation in the complex plane. The method described in this paper involves the application of certain multiplying factors to the equations. In the present case it is relatively easy to guess the multiplying factors and then the method is essentially a real-variable technique. It is presented in this way in § 2 below.


1960 ◽  
Vol 4 (3) ◽  
pp. 108-110 ◽  
Author(s):  
Ian N. Sneddon

When the theory of Hankel transforms is applied to the solution of certain mixed boundary value problems in mathematical physics, the problems are reduced to the solution of dual integral equations of the typewhere α and ν are prescribed constants and f(ρ) is a prescribed function of ρ [1]. The formal solution of these equations was first derived by Titchmarsh [2]. The method employed by Titchmarsh in deriving the solution in the general case is difficult, involving the theory of Mellin transforms and what is essentially a Wiener-Hopf procedure. In lecturing to students on this subject one often feels the need for an elementary solution of these equations, especially in the cases α = ± 1, ν = 0. That such an elementary solution exists is suggested by Copson's solution [3] of the problem of the electrified disc which corresponds to the case α = –l, ν = 0. A systematic use of a procedure similar to Copson's has in fact been made by Noble [4] to find the solution of a pair of general dual integral equations, but again the analysis is involved and long. The object of the present note is to give a simple solution of the pairs of equations which arise most frequently in physical applications. The method of solution was suggested by a procedure used by Lebedev and Uflyand [5] in the solution of a much more general problem.


1977 ◽  
Vol 18 (2) ◽  
pp. 175-177 ◽  
Author(s):  
D. C. Stocks

In this note we formally solve the following dual integral equations:where h is a constant and the Fourier cosine transform of u–1 φ(u) is assumed to exist. These dual equations arise in a crack problem in elasticity theory.


1961 ◽  
Vol 12 (3) ◽  
pp. 119-122 ◽  
Author(s):  
B. Noble ◽  
A. S. Peters

In (1), § 6.2, a multiplying factor method has been used to solve certain dual integral equations. The results are then used to solve a single integral equation of the Wiener-Hopf type. In this note we indicate how a related technique can be used to solve Wiener-Hopf integral equations directly. ConsiderwhereDefinewhere α = σ+iτ, and F+(α) is regular for τ>q; K(α) is regular and non-zero in −p < τ < p. For simplicity we restrict ourselves to the case where


1963 ◽  
Vol 15 ◽  
pp. 631-640 ◽  
Author(s):  
E. R. Love

Erdélyi and Sneddon (4) have reduced the dual integral equations (4, (1.4))where Ψ is unknown, to a single Fredholm integral equation (4, (4.4)), from the solution of which Ψ is explicitly obtainable. Their work extended and clarified an investigation by Cooke (1), placing it in a context of standard integral transforms. Cooke's reduction was obtained after consideration of the Fredholm integral equation obtained by Love (8) in discussing Nicholson's problem of the electrostatic field of two equal circular coaxial conducting disks (9).


In the last few years Copson, Schwinger and others have obtained exact solutions of a number of diffraction problems by expressing these problems in terms of an integral equation which can be solved by the method of Wiener and Hopf. A simpler approach is given, based on a representation of the scattered field as an angular spectrum of plane waves, such a representation leading directly to a pair of ‘dual’ integral equations, which replaces the single integral equation of Schwinger’s method. The unknown function in each of these dual integral equations is that defining the angular spectrum, and when this function is known the scattered field is presented in the form of a definite integral. As far as the ‘radiation’ field is concerned, this integral is of the type which may be approximately evaluated by the method of steepest descents, though it is necessary to generalize the usual procedure in certain circumstances. The method is appropriate to two-dimensional problems in which a plane wave (of arbitrary polarization) is incident on plane, perfectly conducting structures, and for certain configurations the dual integral equations can be solved by the application of Cauchy’s residue theorem. The technique was originally developed in connexion with the theory of radio propagation over a non-homogeneous earth, but this aspect is not discussed. The three problems considered are those for which the diffracting plates, situated in free space, are, respectively, a half-plane, two parallel half-planes and an infinite set of parallel half-planes; the second of these is illustrated by a numerical example. Several points of general interest in diffraction theory are discussed, including the question of the nature of the singularity at a sharp edge, and it is shown that the solution for an arbitrary (three-dimensional) incident field can be derived from the corresponding solution for a two-dimensional incident plane wave.


1958 ◽  
Vol 11 (2) ◽  
pp. 115-126 ◽  
Author(s):  
B. Noble

The classic application of dual integral equations occurs in connexion with the potential of a circular disc (e.g. Titchmarsh (9), p. 334). Suppose that the disc lies in z = 0, 0≤ρ≤1, where we use cylindrical coordinates (p, z). Then it is required to find a solution ofsuch that on z = 0Separation of variables in conjunction with the conditions that ø is finite on the axis and ø tends to zero as z tends to plus infinity yields the particular solution.


1966 ◽  
Vol 15 (1) ◽  
pp. 73-74
Author(s):  
J. S. Lowndes

Consider the dual equationswhere


1986 ◽  
Vol 9 (2) ◽  
pp. 293-300 ◽  
Author(s):  
C. Nasim

In this paper we deal with dual integral equations with an arbitrary weight function and Hankel kernels of distinct and general order. We propose an operational procedure, which depends on exploiting the properties of the Mellin transforms, and readily reduces the dual equations to a single equation. This then can be inverted by the Hankel inversion to give us an equation of Fredholm type, involving the unknown function. Most of the known results are then derived as special cases of our general result.


Sign in / Sign up

Export Citation Format

Share Document