scholarly journals Cylindrical Compact Thermal-Cycling Device for Continuous-Flow Polymerase Chain Reaction

2004 ◽  
Vol 76 (4) ◽  
pp. 1211-1211
Author(s):  
Nokyoung Park ◽  
Suhyeon Kim ◽  
Jong Hoon Hahn
2003 ◽  
Vol 75 (21) ◽  
pp. 6029-6033 ◽  
Author(s):  
Nokyoung Park ◽  
Suhyeon Kim ◽  
Jong Hoon Hahn

2009 ◽  
Vol 168 (1-2) ◽  
pp. 71-78 ◽  
Author(s):  
Zhang-Run Xu ◽  
Xin Wang ◽  
Xiao-Feng Fan ◽  
Jian-Hua Wang

2008 ◽  
Vol 130 (2) ◽  
pp. 836-841 ◽  
Author(s):  
Yi Sun ◽  
M.V.D. Satyanarayan ◽  
Nam Trung Nguyen ◽  
Yien Chian Kwok

Author(s):  
Hing Wah Lee ◽  
Parthiban Arunasalam ◽  
Ishak A. Azid ◽  
Kankanhally N. Seetharamu

In this study, a hybridized neural-genetic optimization methodology realized by embedding finite element analysis (FEA) trained artificial neural networks (ANN) into genetic algorithms (GA) is used to optimize temperature control in a ceramic based continuous flow polymerase chain reaction (CPCR) device. The CPCR device requires three thermally isolated zones of 94°C, 65°C and 72°C for the corresponding process of denaturing, annealing and extension to complete a cycle of polymerase chain reaction. Three separately addressable heaters provide heat input to each zone, microfluidic channels allow for the transport of fluid between zones and thermal isolation between the zones is maintained by machining air-gaps into the device. The most important aspect of temperature control in the CPCR is to maintain temperature distribution at each reaction zone with a precision of ±1°C or better irrespective of changing ambient conditions. Results obtained from the FEA simulation are compared with published experimental work. Simulation results show good comparison with experimental work for the temperature control in each reaction zone of the microfluidic channels. The data is then used to train the ANN to predict the temperature distribution of the microfluidic channel for new heater input power and fluid flow rate. Using these data, optimization of temperature control in the CPCR device is achieved by embedding the trained ANN results as a fitness function into GA. The objective of the optimization is to minimize the temperature difference in each reaction zone of the microfluidic channel while satisfying the residence time requirement. Finally, the optimized results for the CPCR device are used to build a new FEA model for numerical simulation analysis. The simulation results for the neural-genetic optimized CPCR model and the initial CPCR model are then compared. The neural-genetic optimized model shows a significant improvement from the initial model establishing the optimization methods superiority.


2008 ◽  
Vol 2 (2) ◽  
Author(s):  
Shadi Mahjoob ◽  
Kambiz Vafai

Polymerase chain reaction (PCR) is the most commonly used molecular biology technique to amplify nucleic acid (DNA and RNA) in vitro. This technique is highly temperature sensitive and thermal management has an important role in PCR operation in reaching the required temperature set points at each step of the process (denaturing, annealing and elongation). In this work, an innovative microfluidic PCR thermal cycling device is designed to increase the heating∕cooling thermal cycling speed while maintaining a uniform temperature distribution throughout the substrate containing the aqueous nucleic acid sample. The device design is incorporating the jet impingement and micro-channel thermal management technologies utilizing a properly arranged configuration filled with a porous medium. Porous Inserts are attractive choices in heat transfer augmentation. They provide a very large surface area for a given volume which is a key parameter in heat transfer processes. Various effective parameters that are relevant in optimizing this flexible thermal cycler are investigated such as thermal cycler configuration, thickness of inlet and exit fluid channels, fluid flow rate and velocity, the porous matrix material and properties, and utilization of thermal grease. An optimized case is established based on the effects of the cited parameters on the temperature ramp, temperature distribution and the required power for circulating the fluid in the thermal cycler. The results indicate that the heating∕cooling temperature ramp (temperature change per heating∕cooling cycling time) of the proposed device is considerably higher (150.82◻C∕s) than those in literature. In addition, the proposed PCR offers a very uniform temperature in the substrate while utilizing a low power.


Sign in / Sign up

Export Citation Format

Share Document