Fiber-Optic Raman Spectroscopy with Nature-Inspired Genetic Algorithms Enhances Real-Time in Vivo Detection and Diagnosis of Nasopharyngeal Carcinoma

2019 ◽  
Vol 91 (13) ◽  
pp. 8101-8108 ◽  
Author(s):  
Petar Žuvela ◽  
Kan Lin ◽  
Chi Shu ◽  
Wei Zheng ◽  
Chwee Ming Lim ◽  
...  
Theranostics ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 3517-3526 ◽  
Author(s):  
Kan Lin ◽  
Wei Zheng ◽  
Chwee Ming Lim ◽  
Zhiwei Huang

2016 ◽  
Vol 7 (9) ◽  
pp. 3705 ◽  
Author(s):  
Kan Lin ◽  
Wei Zheng ◽  
Chwee Ming Lim ◽  
Zhiwei Huang

2016 ◽  
Vol 187 ◽  
pp. 377-392 ◽  
Author(s):  
Jianfeng Wang ◽  
Kan Lin ◽  
Wei Zheng ◽  
Khek Yu Ho ◽  
Ming Teh ◽  
...  

This study aims to assess the clinical utility of a rapid fiber-optic Raman spectroscopy technique developed for enhancingin vivodiagnosis of gastric precancer during endoscopic examination. We have developed a real-time fiber-optic Raman spectroscopy system capable of simultaneously acquiring both fingerprint (FP) (i.e., 800–1800 cm−1) and high-wavenumber (HW) (i.e., 2800–3600 cm−1) Raman spectra from gastric tissuein vivoat endoscopy. A total of 5792 high-qualityin vivoFP/HW Raman spectra (normal (n= 5160); dysplasia (n= 155), and adenocarcinoma (n= 477)) were acquired in real-time from 441 tissue sites (normal (n= 396); dysplasia (n= 11), and adenocarcinoma (n= 34)) of 191 gastric patients (normal (n= 172); dysplasia (n= 6), and adenocarcinoma (n= 13)) undergoing routine endoscopic examinations. Partial least squares discriminant analysis (PLS-DA) together with leave-one-patient-out cross validation (LOPCV) were implemented to develop robust spectral diagnostic models. The FP/HW Raman spectra differ significantly between normal, dysplasia and adenocarcinoma of the stomach, which can be attributed to changes in proteins, lipids, nucleic acids, and the bound water content. PLS-DA and LOPCV show that the fiber-optic FP/HW Raman spectroscopy provides diagnostic sensitivities of 96.0%, 81.8% and 88.2%, and specificities of 86.7%, 95.3% and 95.6%, respectively, for the classification of normal, dysplastic and cancerous gastric tissue, superior to either the FP or HW Raman techniques alone. Further dichotomous PLS-DA analysis yields a sensitivity of 90.9% (10/11) and specificity of 95.9% (380/396) for the detection of gastric dysplasia using FP/HW Raman spectroscopy, substantiating its clinical advantages over white light reflectance endoscopy (sensitivity: 90.9% (10/11), and specificity: 51.0% (202/396)). This work demonstrates that the fiber-optic FP/HW Raman spectroscopy technique has great promise for enhancingin vivodiagnosis of gastric precancer during routine endoscopic examination.


2019 ◽  
Vol 15 (5) ◽  
pp. 567-574
Author(s):  
Huck Jun Hong ◽  
Suw Young Ly

Background: Tetrodotoxin (TTX) is a biosynthesized neurotoxin that exhibits powerful anticancer and analgesic abilities by inhibiting voltage-gated sodium channels that are crucial for cancer metastasis and pain delivery. However, for the toxin’s future medical applications to come true, accurate, inexpensive, and real-time in vivo detection of TTX remains as a fundamental step. Methods: In this study, highly purified TTX extracted from organs of Takifugu rubripes was injected and detected in vivo of mouse organs (liver, heart, and intestines) using Cyclic Voltammetry (CV) and Square Wave Anodic Stripping Voltammetry (SWASV) for the first time. In vivo detection of TTX was performed with auxiliary, reference, and working herring sperm DNA-immobilized carbon nanotube sensor systems. Results: DNA-immobilization and optimization of amplitude (V), stripping time (sec), increment (mV), and frequency (Hz) parameters for utilized sensors amplified detected peak currents, while highly sensitive in vivo detection limits, 3.43 µg L-1 for CV and 1.21 µg L-1 for SWASV, were attained. Developed sensors herein were confirmed to be more sensitive and selective than conventional graphite rodelectrodes modified likewise. A linear relationship was observed between injected TTX concentration and anodic spike peak height. Microscopic examination displayed coagulation and abnormalities in mouse organs, confirming the powerful neurotoxicity of extracted TTX. Conclusion: These results established the diagnostic measures for TTX detection regarding in vivo application of neurotoxin-deviated anticancer agents and analgesics, as well as TTX from food poisoning and environmental contamination.


2020 ◽  
Vol 59 (35) ◽  
pp. 15152-15156 ◽  
Author(s):  
Beatriz Lozano‐Torres ◽  
Juan F. Blandez ◽  
Irene Galiana ◽  
Alba García‐Fernández ◽  
María Alfonso ◽  
...  

2017 ◽  
Vol 16 (7) ◽  
pp. 571-584 ◽  
Author(s):  
Hongzhi Guo ◽  
Josep Miquel Jornet ◽  
Qiaoqiang Gan ◽  
Zhi Sun
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document