scholarly journals Reversible and Irreversible Redox Processes in Li-Rich Layered Oxides

Author(s):  
Michael Merz ◽  
Bixian Ying ◽  
Peter Nagel ◽  
Stefan Schuppler ◽  
Karin Kleiner
2020 ◽  
Vol 31 ◽  
pp. 146-155 ◽  
Author(s):  
Xue Bai ◽  
Antonella Iadecola ◽  
Jean-Marie Tarascon ◽  
Patrick Rozier

2020 ◽  
Vol 13 (4) ◽  
pp. 1269-1278 ◽  
Author(s):  
Kyojin Ku ◽  
Byunghoon Kim ◽  
Sung-Kyun Jung ◽  
Yue Gong ◽  
Donggun Eum ◽  
...  

We propose a new lithium diffusion model involving coupled lithium and transition metal migration, peculiarly occurring in a lithium-rich layered oxide.


2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


Author(s):  
Bryant C. Jurgens ◽  
Peter B. McMahon ◽  
Francis H. Chapelle ◽  
Sandra M. Eberts
Keyword(s):  

Author(s):  
Weibo Hua ◽  
Suning Wang ◽  
Kai Wang ◽  
Alexander Missyul ◽  
Qiang Fu ◽  
...  
Keyword(s):  

Author(s):  
Junfang Ding ◽  
Zhibin Geng ◽  
Liping Li ◽  
Ye Wang ◽  
Ying Zuo ◽  
...  

Rationally design and integrate the collaborative active species on the interface is a crucial issue for the development of advanced materials. In this work, we present a simple interlayer cation...


Author(s):  
Tianshuo Wang ◽  
Chunxiao Zhang ◽  
Shuwei Li ◽  
Xi Shen ◽  
Liangjun Zhou ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Dongdong Wang ◽  
Qizhang Yan ◽  
Mingqian Li ◽  
Hongpeng Gao ◽  
Jianhua Tian ◽  
...  

Nickel (Ni)-rich layered oxides such as LiNi0.6Co0.2Mn0.2O2 (NCM622) represent one of the most promising candidates for the next-generation high-energy lithium-ion batteries (LIBs). However, the pristine Ni-rich cathode materials usually suffer...


Sign in / Sign up

Export Citation Format

Share Document