Methylammonium Governs Structural and Optical Properties of Hybrid Lead Halide Perovskites through Dynamic Hydrogen Bonding

Author(s):  
Gabriele Saleh ◽  
Giulia Biffi ◽  
Francesco Di Stasio ◽  
Beatriz Martín-García ◽  
Ahmed L. Abdelhady ◽  
...  
2021 ◽  
Author(s):  
Xianhao Zhao ◽  
Tianyu Tang ◽  
Quan Xie ◽  
like gao ◽  
Limin Lu ◽  
...  

The cesium lead halide perovskites are regarded as effective candidates for light-absorbing materials in solar cells, which have shown excellent performances in experiments such as promising energy conversion efficiency. In...


2016 ◽  
Vol 45 (3) ◽  
pp. 655-689 ◽  
Author(s):  
Yixin Zhao ◽  
Kai Zhu

This article reviews recent progress on hybrid perovskites including crystal/thin-film synthesis, structural/chemical/electro-optical properties, (opto)electronic applications, and research issues/challenges.


2021 ◽  
Vol 130 (14) ◽  
pp. 143105
Author(s):  
Guangbiao Xiang ◽  
Yanwen Wu ◽  
Xiaona Miao ◽  
Yushuang Li ◽  
Jiancai Leng ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Muhammad Waqas

Lead halide perovskites have attracted considerable attention as optoelectronic materials because these materials have high photovoltaic conversion efficiency. The current study is based on Density Functional Theory (DFT). This theory was used to calculate the structural, optical, and electronic properties of the lead halide perovskites CsPbX3 (X = Chlorine (Cl), Bromine (Br), Iodine (I)) compounds . In order to calculate the above mentioned properties of cubic perovskites CsPbX3 (X = Cl, Br, I), Full Potential Linear Augmented Plane Wave (FP-LAPW) method was implemented in conjunction with DFT utilizing LDA, GGA-PBE and mBJ approximations. A good agreement was found between experimentally measured values and theoretically calculated lattice constants. These compounds have a direct and wide band gap located at the point of R-symmetry, while the band gap decreases from ‘Cl’ to ‘I’ down the group. The densities of electrons revealed a strong ionic bond between Cs and halides and a strong covalent bond between ‘Pb’ and (Cl, Br, and I). The dielectric functions (reflectivity, refractive indices, absorption coefficients), optical conductivities (real and imaginary part) and other optical properties indicated that these compounds have novel energy harvester applications. The modeling of these perovskite compounds shows that they have high absorption power and direct band gaps in visible ultraviolet range and it also shows that these compounds have potential applications in solar cells.


2015 ◽  
Vol 137 ◽  
pp. 253-257 ◽  
Author(s):  
Yajie Jiang ◽  
Martin A. Green ◽  
Rui Sheng ◽  
Anita Ho-Baillie

Sign in / Sign up

Export Citation Format

Share Document