Effect of the Zeolite Type on Catalytic Performance in Dewaxing of the Diesel Fraction under Sour Conditions

Author(s):  
Olga A. Kosareva ◽  
Denis N. Gerasimov ◽  
Igor A. Maslov ◽  
Irina V. Pigoleva ◽  
Svetlana V. Zaglyadova ◽  
...  
2010 ◽  
Vol 7 (4) ◽  
pp. 1138-1147 ◽  
Author(s):  
L. Giraldo ◽  
G. Camargo ◽  
J. Tirano ◽  
J. C. Moreno-Piraján

A series of Ni-Cu supported onto zeolite type ZSM-5 has been synthesized by direct hydrothermal method without template agent and characterized using XRD, FT-IR, NRM mass, SEM, CG and N2adsorption techniques. The catalytic performance of the obtained materials was evaluated and utilized for the hydrogenation of palm oil at 453 K and 40 atmospheres of pressure. The results show that the samples exhibited typical hexagonal arrangement of mesoporous structure with high surface area and the heteroatoms were probably incorporated into the framework of ZSM-5. Catalytic tests show that the bimetallic incorporated materials were effective as catalysts in the hydrogenation of oil palm producing fatty alcohols typical.


2020 ◽  
Vol 56 (49) ◽  
pp. 6696-6699
Author(s):  
Ruoyu Fan ◽  
Zhi Hu ◽  
Chun Chen ◽  
Xiaoguang Zhu ◽  
Haimin Zhang ◽  
...  

A HD-Ni/N-CMS catalyst exhibited excellent catalytic performance in aqueous-phase hydrodeoxygenation of lignin-derived vanillin through a synergistic effect of zeolite-type N-CMS and the unsaturated Ni–N coordination site.


2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


2020 ◽  
Vol 8 (35) ◽  
pp. 18207-18214
Author(s):  
Dongbo Jia ◽  
Lili Han ◽  
Ying Li ◽  
Wenjun He ◽  
Caichi Liu ◽  
...  

A novel, rational design for porous S-vacancy nickel sulfide catalysts with remarkable catalytic performance for alkaline HER.


2019 ◽  
Author(s):  
M. Alexander Ardagh ◽  
Manish Shetty ◽  
Anatoliy Kuznetsov ◽  
Qi Zhang ◽  
Phillip Christopher ◽  
...  

Catalytic enhancement of chemical reactions via heterogeneous materials occurs through stabilization of transition states at designed active sites, but dramatically greater rate acceleration on that same active site is achieved when the surface intermediates oscillate in binding energy. The applied oscillation amplitude and frequency can accelerate reactions orders of magnitude above the catalytic rates of static systems, provided the active site dynamics are tuned to the natural frequencies of the surface chemistry. In this work, differences in the characteristics of parallel reactions are exploited via selective application of active site dynamics (0 < ΔU < 1.0 eV amplitude, 10<sup>-6</sup> < f < 10<sup>4</sup> Hz frequency) to control the extent of competing reactions occurring on the shared catalytic surface. Simulation of multiple parallel reaction systems with broad range of variation in chemical parameters revealed that parallel chemistries are highly tunable in selectivity between either pure product, even when specific products are not selectively produced under static conditions. Two mechanisms leading to dynamic selectivity control were identified: (i) surface thermodynamic control of one product species under strong binding conditions, or (ii) catalytic resonance of the kinetics of one reaction over the other. These dynamic parallel pathway control strategies applied to a host of chemical conditions indicate significant potential for improving the catalytic performance of many important industrial chemical reactions beyond their existing static performance.


2014 ◽  
Vol 29 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Yu-Cheng DU ◽  
Guang-Wei ZHENG ◽  
Qi MENG ◽  
Li-Ping WANG ◽  
Hai-Guang FAN ◽  
...  

2010 ◽  
Vol 31 (4) ◽  
pp. 429-434
Author(s):  
Ming ZHAO ◽  
Hairong WANG ◽  
Shanhu CHEN ◽  
Yanling YAO ◽  
Maochu GONG ◽  
...  

2014 ◽  
Vol 32 (8) ◽  
pp. 1400-1404
Author(s):  
Xia LI ◽  
Xiazhen YANG ◽  
Haodong TANG ◽  
Huazhang LIU

Sign in / Sign up

Export Citation Format

Share Document