mesoporous structure
Recently Published Documents


TOTAL DOCUMENTS

695
(FIVE YEARS 246)

H-INDEX

43
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Jiayu Ma ◽  
Qingqing Zhang ◽  
Ziyu Chen ◽  
Kai Kang ◽  
Lihan Pan ◽  
...  

Abstract The efficient C-H polarization is the prerequisite for the low-temperature photocatalytic CH4 conversion, which however is restricted by the poor stretching ability of short-distanced lattice atoms. Herein, frustrated Lewis pair (FLP) composed of doped ion in TiO2 as Lewis acid (LA) and neighboring Ti-OH as Lewis base (LB) with a long distance (0.31-0.37 nm) were designed through DFT calculation and fabricated by hydrogenation treatment of metal-doped TiO2-SiO2 with macroporous-mesoporous structure. Benefitting from the long LA-LB distance and matched acid-base intensity, hydrogenated Ga-doped composite achieves superior C-H stretching with a high CH4 conversion rate (139 µmol g−1 h−1) to ethane. The photo-irradiation causes the electron excitation from Ga to Ti-OH according to the time-dependent DFT calculation and in situ EPR analysis, which promotes the formation and coupling of ·CH3. This work provides a key underpinning for regulating the characteristics of FLP for C-H activation and C-C coupling via light irradiation.


Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Zexuan Wei ◽  
Jingwen Song ◽  
Renzhi Ma ◽  
Katsuhiko Ariga ◽  
Lok Kumar Shrestha

Low-molecular-weight acid vapors cause aging and destruction in material processing. In this paper, facile fabrication of novel corn-husk-shaped fullerene C60 crystals (CHFCs) through the dynamic liquid–liquid interfacial precipitation method is reported. The CHFCs were grown at the liquid–liquid interface between isopropyl alcohol (IPA) and a saturated solution of C60 in mesitylene under ambient temperature and pressure conditions. The average length, outer diameter, and inner diameter of CHFCs were ca. 2.88 μm, 672 nm, and 473 nm, respectively. X-ray diffraction (XRD) analysis showed the CHFCs exhibit a mixed face-centered cubic (fcc) and hexagonal-close pack (hcp) crystal phases with lattice parameters a = 1.425 nm, V = 2.899 nm3 for fcc phase and a = 2.182 nm, c = 0.936 nm, a/c ratio = 2.33, and V = 3.859 nm3 for hcp phase. The CHFCs possess mesoporous structure as confirmed by transmission electron microscopy (TEM) and nitrogen sorption analysis. The specific surface area and the pore volume were ca. 57.3 m2 g−1 and 0.149 cm3 g−1, respectively, are higher than the nonporous pristine fullerene C60. Quartz crystal microbalance (QCM) sensing results show the excellent sensing performance CHFCs sensitive to acetic acid vapors due to the enhanced diffusion via mesoporous architecture and hollow structure of the CHFCs, demonstrating the potential of the material for the development of a new sensor system for aliphatic acid vapors sensing.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 296-303
Author(s):  
K. A. Yakovlev ◽  
◽  
D. V. Mayorov ◽  

A layered double hydroxide of magnesium and aluminum was obtained by solid-phase synthesis.It was found that it has a predominantly mesoporous structure with cylindrical and wedge-shaped pores, as well as a specific surface area of 50 m2/g. The process of phosphate ion sorption by a synthesized sample is studied. Processing of experimental data on the Freundlich and Langmuir sorption equations showed that the process is described fairly accurately by the Langmuir monomolecular adsorption equation. The capacity of the adsorption monolayer of the synthesized sample with respect to the РО43--ion and the adsorption equilibrium constant are calculated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Weng ◽  
Ziying Zhang ◽  
Huizhen Zhang ◽  
Yangyang Zhou ◽  
Xiaona Zhao ◽  
...  

SnO2 is a promising anode material for lithium-ion batteries due to its high theoretical specific capacity and low operation voltage. However, its poor cycling performance hinders its commercial application. In order to improve the cycling stability of SnO2 electrodes, novel flower-like SnO2/TiO2 hollow spheres were prepared by facile hydrothermal method using carbon spheres as templates. Their flower-like shell and mesoporous structure highlighted a large specific surface area and excellent ion migration performance. Their TiO2 hollow sphere matrix and 2D SnO2 nano-flakes ensured good cycle stability. The electrochemical measurements indicated that novel flower-like SnO2/TiO2 hollow spheres delivered a high specific capacity, low irreversible capacity loss and superior rate performance. After 1,000 cycles at current densities of 200 mA g−1, the capacity of the flower-like SnO2/TiO2 hollow spheres was still maintained at 720 mAh g−1. Their rate capacity reached 486 mAh g−1 when the current densities gradually increase to 2,000 mA g−1.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1489
Author(s):  
Hua Pan ◽  
Wenjing Li ◽  
Litao Wu ◽  
Weilan Huang ◽  
Fang Zhang

In the present research, photo-responsive controlled-release hexaconazole (Hex) nanoparticles (Nps) were successfully prepared with azobenzene (Azo)-modified bimodal mesoporous silica (BMMs), in which β-cyclodextrin (β-CD) was capped onto the BMMs-Azo surface via host–guest interactions (Hex@BMMs/Azo/β-CD). Scanning electron microscopy (SEM) confirmed that the nanoparticles had a spherical structure, and their average diameter determined by dynamic light scattering (DLS) was found to be 387.2 ± 3.8 nm. X-ray powder-diffraction analysis and N2-adsorption measurements indicated that Hex was loaded into the pores of the mesoporous structure, but the structure of the mesoporous composite was not destroyed. The loading capacity of Hex@BMMs/Azo/β-CD nanoparticles for Hex was approximately 27.3%. Elemental components of the nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS) and electron dispersive spectroscopy (EDS). Ultraviolet–visible-light (UV–Vis) absorption spectroscopy tests showed that the azophenyl group in BMMs-Azo undergoes effective and reversible cis-trans isomerization under UV–Vis irradiation. Hex@BMMs/Azo/β-CD Nps exhibited excellent light-sensitive controlled-release performance. The release of Hex was much higher under UV irradiation than that in the dark, which could be demonstrated by the bioactivity test. The nanoparticles also displayed excellent pH-responsive properties, and the sustained-release curves were described by the Ritger–Peppas release kinetic model. BMMs nanocarriers had good biological safety and provided a basis for the development of sustainable agriculture in the future.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojian Hou ◽  
Yi Song ◽  
Yueju Zhao ◽  
Wenxiu Li ◽  
Zanwu Guo ◽  
...  

Well-ordered hierarchically porous carbon (HPC) nanomaterials have been successfully synthesized by a facile, efficient, and fast heated-evaporation induced self-assembly (HISA) method. A micelle system was employed as the template by using the HISA method for the first time, which possessed great potential in the large-scale production of HPC materials. Various surfactants, including triblock copolymer Pluronic F127, P123, F108, and cationic CTAB, were used in the polymerization process as templates to reveal the relationship between the structure of surfactants and architecture of the as-prepared HPCs. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Nitrogen adsorption, and Fourier transform infrared (FTIR) measurements were conducted to investigate the morphology, structure, and components of HPCs, which further confirmed the well-ordered and uniform mesoporous structure. The as-prepared HPC sample with F127 possessed the largest specific surface area, suitable pore size, and well-ordered mesoporous structure, resulting in better electrochemical performance as electrodes in the fields of energy storage and conversion system. Doped with the metallic oxide MnO2, the MnO2/HPC composites presented the outstanding electrochemical activity in supercapacitor with a high specific capacitance of 531.2 F g−1 at 1 A g−1 and excellent cycling performance with little capacity fading, even after 5,000 cycles. Moreover, the obtained sample could also be applied in the fields of oxygen reduction reaction (ORR) for its abundant active sites and regulate architecture. This versatile approach makes the mass industrial production of HPC materials possible in electrochemical applications through a facile and fast route.


2021 ◽  
Vol 22 (4) ◽  
pp. 697-710
Author(s):  
Ivan Mironyuk ◽  
Nazarii Danyliuk ◽  
Tetiana Tatarchuk ◽  
Ihor Mykytyn ◽  
Volodymyr Kotsyubynsky

Fe-doped TiO2 (2, 5, 10, 15 and 20% wt. of Fe) photocatalysts have been synthesized by sol-gel method using titanium aquacomplex precursor. The structure and morphology have been characterized by XRD, BET, SEM, and EDS analyses, Mossbauer and IR spectroscopies. XRD analysis confirmed the anatase structure. The introduction of ferric ions into the titania structure causes its amorphization. The crystallite sizes of obtained samples are around 3 nm. Fe-doped TiO2 samples possess mesoporous structure and high specific surface area (from 274 m2g-1 for 5Fe-TiO2 to 416.4 m2g-1 for 20Fe-TiO2). Mossbauer spectroscopy data confirms the incorporation of Fe3+ ions in the anatase structure. Photocatalytic degradation of Congo red dye using Fe-doped TiO2 photocatalysts was studied under the UV-A light. Optimized conditions for photocatalytic degradation of CR in the presence of hydrogen peroxide are obtained. It was found that the 2Fe-TiO2 sample in the presence of 20 mM H2O2 solution showed highest efficiency in dye photodegradation (99.4%) under UV-A light. The photodegradation kinetics was analyzed using a smartphone and fits well with first-order kinetics model.


2021 ◽  
Author(s):  
P. Araichimani ◽  
K.M. Prabu ◽  
G. Suresh Kumar ◽  
Gopalu Karunakaran ◽  
S. Surendhiran ◽  
...  

Abstract We synthesized mesoporous SiO2 nanomatrix using rice husks as a precursor through a facile thermal combustion process. XRD, FTIR, EDX, and TEM analyses were used to validate the produced mesoporous SiO2 nanomatrix. Electrochemical measurements were used to determine the specific capacitance of mesoporous SiO2 nanomatrix, and the results showed that the specific capacitances are 216, 204, 182, 163, 152, 142, 135, 133, 124.4, 124 F/g at current densities of 0.5, 1, 2, 4, 6, 8, 10, 12, 14, and 16 A/g. The benefit of impurities, as well as the large surface area and mesoporous structure of rice husk derived SiO2 nanostructures, allow Faradaic redox reactions at the electrode surface and the resulting supercapacitive behavior. This research might lead to a low-cost technique of producing supercapacitor electrodes using rice husk-derived SiO2 as a precursor.


Sign in / Sign up

Export Citation Format

Share Document