Response of Soil Respiration and Its Components to Warming and Dominant Species Removal along an Elevation Gradient in Alpine Meadow of the Qinghai–Tibetan Plateau

2020 ◽  
Vol 54 (17) ◽  
pp. 10472-10482
Author(s):  
Lizheng Dong ◽  
Wenjing Zeng ◽  
Ankuo Wang ◽  
Junjie Tang ◽  
Xiaodong Yao ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Gang Fu ◽  
Xianzhou Zhang ◽  
Chengqun Yu ◽  
Peili Shi ◽  
Yuting Zhou ◽  
...  

Alpine meadows are one major type of pastureland on the Tibetan Plateau. However, few studies have evaluated the response of soil respiration (Rs) to grazing along an elevation gradient in an alpine meadow on the Tibetan Plateau. Here three fenced enclosures were established in an alpine meadow at three elevations (i.e., 4313 m, 4513 m, and 4693 m) in July 2008. We measuredRsinside and outside the three fenced enclosures in July–September, 2010-2011. Topsoil (0–20 cm) samples were gathered in July, August, and September, 2011. There were no significant differences forRs, dissolved organic C (DOC), and belowground root biomass (BGB) between the grazed and ungrazed soils. Soil respiration was positively correlated with soil organic C (SOC), microbial biomass (MBC), DOC, and BGB. In addition, bothRsand BGB increased with total N (TN), the ratio of SOC to TN, ammonium N (NH4+-N), and the ratio ofNH4+-N to nitrate N. Our findings suggested that the negligible response ofRsto grazing could be directly attributed to that of respiration substrate and that soil N may indirectly affectRsby its effect on BGB.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wen Li ◽  
Jinlan Wang ◽  
Xiaolong Li ◽  
Shilin Wang ◽  
Wenhui Liu ◽  
...  

Abstract Soil respiration (Rs) plays a critical role in the global carbon (C) balance, especially in the context of globally increasing nitrogen (N) deposition. However, how N-addition influences C cycle remains unclear. Here, we applied seven levels of N application (0 (N0), 54 (N1), 90 (N2), 126 (N3), 144 (N4), 180 (N5) and 216 kg N ha−1 yr−1 (N6)) to quantify their impacts on Rs and its components (autotrophic respiration (Ra) and heterotrophic respiration (Rh)) and C and N storage in vegetation and soil in alpine meadow on the northeast margin of the Qinghai-Tibetan Plateau. We used a structural equation model (SEM) to explore the relative contributions of C and N storage, soil temperature and soil moisture and their direct and indirect pathways in regulating soil respiration. Our results revealed that the Rs, Ra and Rh, C and N storage in plant, root and soil (0–10 cm and 10–20 cm) all showed initial increases and then tended to decrease at the threshold level of 180 kg N ha−1 yr−1. The SEM results indicated that soil temperature had a greater impact on Rs than did volumetric soil moisture. Moreover, SEM also showed that C storage (in root, 0–10 and 10–20 cm soil layers) was the most important factor driving Rs. Furthermore, multiple linear regression model showed that the combined root C storage, 0–10 cm and 10–20 cm soil layer C storage explained 97.4–97.6% variations in Rs; explained 94.5–96% variations in Ra; and explained 96.3–98.1% in Rh. Therefore, the growing season soil respiration and its components can be well predicted by the organic C storage in root and topsoil in alpine meadow of the north-eastern Qinghai-Tibetan Plateau. Our study reveals the importance of topsoil and root C storage in driving growing season Rs in alpine meadow on the northeast margin of Qinghai-Tibetan Plateau.


2004 ◽  
Vol 36 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Guangmin Cao ◽  
Yanhong Tang ◽  
Wenhong Mo ◽  
Yuesi Wang ◽  
Yingnian Li ◽  
...  

Plant Ecology ◽  
2009 ◽  
Vol 209 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Guangping Xu ◽  
Yigang Hu ◽  
Shiping Wang ◽  
Zhenhua Zhang ◽  
Xiaofeng Chang ◽  
...  

2014 ◽  
Vol 30 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Jing Jiang ◽  
Peili Shi ◽  
Ning Zong ◽  
Gang Fu ◽  
Zhenxi Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document