scholarly journals Downhole Transformation of the Hydraulic Fracturing Fluid Biocide Glutaraldehyde: Implications for Flowback and Produced Water Quality

2016 ◽  
Vol 50 (20) ◽  
pp. 11414-11423 ◽  
Author(s):  
Genevieve A. Kahrilas ◽  
Jens Blotevogel ◽  
Edward R. Corrin ◽  
Thomas Borch
2015 ◽  
Vol 12 (3) ◽  
pp. 286 ◽  
Author(s):  
Madeleine E. Payne ◽  
Heather F. Chapman ◽  
Janet Cumming ◽  
Frederic D. L. Leusch

Environmental context Hydraulic fracturing fluids, used in large volumes by the coal seam gas mining industry, are potentially present in the environment either in underground formations or in mine wastewater (produced water). Previous studies of the human health and environmental effects of this practice have been limited because they use only desktop methods and have not considered combined mixture toxicity. We use a novel in vitro method for toxicity assessment, and describe the toxicity of a hydraulic fracturing fluid on a human gastrointestinal cell line. Abstract Hydraulic fracturing fluids are chemical mixtures used to enhance oil and gas extraction. There are concerns that fracturing fluids are hazardous and that their release into the environment – by direct injection to coal and shale formations or as residue in produced water – may have effects on ecosystems, water quality and public health. This study aimed to characterise the acute cytotoxicity of a hydraulic fracturing fluid using a human gastrointestinal cell line and, using this data, contribute to the understanding of potential human health risks posed by coal seam gas (CSG) extraction in Queensland, Australia. Previous published research on the health effects of hydraulic fracturing fluids has been limited to desktop studies of individual chemicals. As such, this study is one of the first attempts to characterise the toxicity of a hydraulic fracturing mixture using laboratory methods. The fracturing fluid was determined to be cytotoxic, with half maximal inhibitory concentrations (IC50) values across mixture variations ranging between 25 and 51mM. When used by industry, these fracturing fluids would be at concentrations of over 200mM before injection into the coal seam. A 5-fold dilution would be sufficient to reduce the toxicity of the fluids to below the detection limit of the assay. It is unlikely that human exposure would occur at these high (‘before use’) concentrations and likely that the fluids would be diluted during use. Thus, it can be inferred that the level of acute risk to human health associated with the use of these fracturing fluids is low. However, a thorough exposure assessment and additional chronic and targeted toxicity assessments are required to conclusively determine human health risks.


2021 ◽  
Vol 9 ◽  
Author(s):  
Brennan Ferguson ◽  
Vikas Agrawal ◽  
Shikha Sharma ◽  
J. Alexandra Hakala ◽  
Wei Xiong

Natural gas extracted from tight shale formations, such as the Marcellus Shale, represents a significant and developing front in energy exploration. By fracturing these formations using pressurized fracturing fluid, previously unobtainable hydrocarbon reserves may be tapped. While pursuing this resource, hydraulic fracturing operations leave chemically complex fluids in the shale formation for at least two weeks. This provides a substantial opportunity for the hydraulic fracturing fluid (HFF) to react with the shale formation at reservoir temperature and pressure. In this study, we investigated the effects of the carbonates on shale-HFF reactions with a focus on the Marcellus Shale. We performed autoclave experiments at high temperature and pressure reservoir conditions using a carbonate-rich and a decarbonated or carbonate-free version of the same shale sample. We observed that carbonate minerals buffer the pH of the solution, which in turn prevents clay dissolution. Carbonate and bicarbonate ions also scavenge reactive oxidizing species (ROS), which prevents oxidation of shale organic matter and volatile organic compounds (VOCs). Carbonate-free samples also show higher pyrite dissolution compared to the carbonate-rich sample due to chelation reactions. This study demonstrates how carbonate minerals (keeping all other variables constant) affect shale-HFF reactions that can potentially impact porosity, microfracture integrity, and the release of heavy metals and volatile organic contaminants in the produced water.


Wear ◽  
2019 ◽  
Vol 422-423 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiguo Wang ◽  
Jun Zhang ◽  
Siamack A. Shirazi ◽  
Yihua Dou

Sign in / Sign up

Export Citation Format

Share Document