In vitro cytotoxicity assessment of a hydraulic fracturing fluid

2015 ◽  
Vol 12 (3) ◽  
pp. 286 ◽  
Author(s):  
Madeleine E. Payne ◽  
Heather F. Chapman ◽  
Janet Cumming ◽  
Frederic D. L. Leusch

Environmental context Hydraulic fracturing fluids, used in large volumes by the coal seam gas mining industry, are potentially present in the environment either in underground formations or in mine wastewater (produced water). Previous studies of the human health and environmental effects of this practice have been limited because they use only desktop methods and have not considered combined mixture toxicity. We use a novel in vitro method for toxicity assessment, and describe the toxicity of a hydraulic fracturing fluid on a human gastrointestinal cell line. Abstract Hydraulic fracturing fluids are chemical mixtures used to enhance oil and gas extraction. There are concerns that fracturing fluids are hazardous and that their release into the environment – by direct injection to coal and shale formations or as residue in produced water – may have effects on ecosystems, water quality and public health. This study aimed to characterise the acute cytotoxicity of a hydraulic fracturing fluid using a human gastrointestinal cell line and, using this data, contribute to the understanding of potential human health risks posed by coal seam gas (CSG) extraction in Queensland, Australia. Previous published research on the health effects of hydraulic fracturing fluids has been limited to desktop studies of individual chemicals. As such, this study is one of the first attempts to characterise the toxicity of a hydraulic fracturing mixture using laboratory methods. The fracturing fluid was determined to be cytotoxic, with half maximal inhibitory concentrations (IC50) values across mixture variations ranging between 25 and 51mM. When used by industry, these fracturing fluids would be at concentrations of over 200mM before injection into the coal seam. A 5-fold dilution would be sufficient to reduce the toxicity of the fluids to below the detection limit of the assay. It is unlikely that human exposure would occur at these high (‘before use’) concentrations and likely that the fluids would be diluted during use. Thus, it can be inferred that the level of acute risk to human health associated with the use of these fracturing fluids is low. However, a thorough exposure assessment and additional chronic and targeted toxicity assessments are required to conclusively determine human health risks.

2015 ◽  
Vol 12 (3) ◽  
pp. 300
Author(s):  
Madeleine E. Payne ◽  
Heather F. Chapman ◽  
Janet Cumming ◽  
Frederic D. L. Leusch

2016 ◽  
pp. 49-57
Author(s):  
V. R. Kalinin

The article considers the advantages and limitations of hydraulic fracturing fluid based on carboxymethyl cellulose determined as a result of laboratory studies. As a result of testing the studied fluid manufacturing features compared with similar fracturing fluids it was determined that the fluid of interest can be effectively used as a fluid for formation hydraulic fracturing especially in low permeability reservoirs. This fluid is widely available and has a low cost. It can easily replace the foreign analogues.


2021 ◽  
Vol 9 ◽  
Author(s):  
Brennan Ferguson ◽  
Vikas Agrawal ◽  
Shikha Sharma ◽  
J. Alexandra Hakala ◽  
Wei Xiong

Natural gas extracted from tight shale formations, such as the Marcellus Shale, represents a significant and developing front in energy exploration. By fracturing these formations using pressurized fracturing fluid, previously unobtainable hydrocarbon reserves may be tapped. While pursuing this resource, hydraulic fracturing operations leave chemically complex fluids in the shale formation for at least two weeks. This provides a substantial opportunity for the hydraulic fracturing fluid (HFF) to react with the shale formation at reservoir temperature and pressure. In this study, we investigated the effects of the carbonates on shale-HFF reactions with a focus on the Marcellus Shale. We performed autoclave experiments at high temperature and pressure reservoir conditions using a carbonate-rich and a decarbonated or carbonate-free version of the same shale sample. We observed that carbonate minerals buffer the pH of the solution, which in turn prevents clay dissolution. Carbonate and bicarbonate ions also scavenge reactive oxidizing species (ROS), which prevents oxidation of shale organic matter and volatile organic compounds (VOCs). Carbonate-free samples also show higher pyrite dissolution compared to the carbonate-rich sample due to chelation reactions. This study demonstrates how carbonate minerals (keeping all other variables constant) affect shale-HFF reactions that can potentially impact porosity, microfracture integrity, and the release of heavy metals and volatile organic contaminants in the produced water.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1783
Author(s):  
Klaudia Wilk-Zajdel ◽  
Piotr Kasza ◽  
Mateusz Masłowski

In the case of fracturing of the reservoirs using fracturing fluids, the size of damage to the proppant conductivity caused by treatment fluids is significant, which greatly influence the effective execution of hydraulic fracturing operations. The fracturing fluid should be characterized by the minimum damage to the conductivity of a fracture filled with proppant. A laboratory research procedure has been developed to study the damage effect caused by foamed and non-foamed fracturing fluids in the fractures filled with proppant material. The paper discusses the results for high quality foamed guar-based linear gels, which is an innovative aspect of the work compared to the non-foamed frac described in most of the studies and simulations. The tests were performed for the fracturing fluid based on a linear polymer (HPG—hydroxypropyl guar, in liquid and powder form). The rheology of nitrogen foamed-based fracturing fluids (FF) with a quality of 70% was investigated. The quartz sand and ceramic light proppant LCP proppant was placed between two Ohio sandstone rock slabs and subjected to a given compressive stress of 4000–6000 psi, at a temperature of 60 °C for 5 h. A significant reduction in damage to the quartz proppant was observed for the foamed fluid compared to that damaged by the 7.5 L/m3 natural polymer-based non-foamed linear fluid. The damage was 72.3% for the non-foamed fluid and 31.5% for the 70% foamed fluid, which are superior to the guar gum non-foamed fracturing fluid system. For tests based on a polymer concentration of 4.88 g/L, the damage to the fracture conductivity by the non-foamed fluid was 64.8%, and 26.3% for the foamed fluid. These results lead to the conclusion that foamed fluids could damage the fracture filled with proppant much less during hydraulic fracturing treatment. At the same time, when using foamed fluids, the viscosity coefficient increases a few times compared to the use of non-foamed fluids, which is necessary for proppant carrying capacities and properly conducted stimulation treatment. The research results can be beneficial for optimizing the type and performance of fracturing fluid for hydraulic fracturing in tight gas formations.


Sign in / Sign up

Export Citation Format

Share Document