Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid

2017 ◽  
Vol 51 (23) ◽  
pp. 13779-13787 ◽  
Author(s):  
Ryan W. J. Edwards ◽  
Florian Doster ◽  
Michael A. Celia ◽  
Karl W. Bandilla
2019 ◽  
Vol 33 (8) ◽  
pp. 6983-6994 ◽  
Author(s):  
Bin Yang ◽  
Hao Zhang ◽  
Yili Kang ◽  
Lijun You ◽  
Jiping She ◽  
...  

2021 ◽  
Vol 35 (7) ◽  
pp. 5671-5682
Author(s):  
Lijun You ◽  
Nan Zhang ◽  
Yili Kang ◽  
Jieming Xu ◽  
Qiuyang Cheng ◽  
...  

2021 ◽  
Author(s):  
Heng Wang ◽  
Lifa Zhou

<p>Hydraulic fracturing is one of the key technologies to stimulate shale gas production and may have some environmental impacts while enhancing shale gas development. Through the introduction of hydraulic fracturing technology from the design and construction aspects, analysis of its potential adverse environmental impacts in water resource consumption, surface water and groundwater pollution, geological disasters, and other aspects, and based on the existing problems to form targeted solutions.</p><p>According to EIA report, during the stimulation process of shale gas fracturing, the amount of water resources is about 10,000m<sup>3</sup>, of which 20%-80% can be returned, and the flowback rate of Shale gas in China is 20%-60%, which means that at least 20%-40% polluted water containing various chemical raw materials will be hidden in the formation for a long time. The shale flowback rate in China is significantly lower than that in the United States, not only due to formation conditions, but also due to equipment and technology. In view of this situation, it is necessary to control the whole process from design to construction.</p><p>In the design process of hydraulic fracturing of shale gas, real-time control of the fracture range is carried out in conjunction with seismic monitoring and software simulation fitting, so as to reduce the consumption of water resources on the premise of achieving the purpose of increasing production. Especially, to reducing the fracturing program as much as possible in the water-scarce areas, so as to ensure the security of public water resources. Reduce the use of chemical additives to alleviate the pollution of surface water and groundwater. After detection of possible pollution, determine the amount of pollution sources on site and carry out comprehensive pollutant recovery and treatment. Strictly prohibit high-risk pollution sources from entering the fracturing fluid process. At the same time, the fracturing fluid is used to recycled and purified. In terms of geological disasters caused by fracturing, high-risk geological disaster zones should be identified and monitored in advance to prevent large-scale geological activities caused by micro-earthquakes caused by fracturing from causing uncontrollable geological disasters.</p>


2021 ◽  
Author(s):  
Mingjun Chen ◽  
Peisong Li ◽  
Yili Kang ◽  
Xinping Gao ◽  
Dongsheng Yang ◽  
...  

Abstract The low flowback efficiency of fracturing fluid would severely increase water saturation in a near-fracture formation and limit gas transport capacity in the matrix of a shale gas reservoir. Formation heat treatment (FHT) is a state-of-the-art technology to prevent water blocking induced by fracturing fluid retention and accelerate gas desorption and diffusion in the matrix. A comprehensive understanding of its formation damage removal mechanisms and determination of production improvement is conducive to enhancing shale gas recovery. In this research, the FHT simulation experiment was launched to investigate the effect of FHT on gas transport capacity, the multi-field coupling model was established to determine the effective depth of FHT, and the numerical simulation model of the shale reservoir was established to analyze the feasibility of FHT. Experimental results show that the shale permeability and porosity were rising overall during the FHT, the L-1 permeability increased by 30- 40 times, the L-2 permeability increased by more than 100 times. The Langmuir pressure increased by 1.68 times and the Langmuir volume decreased by 26%, which means the methane desorption efficiency increased. Results of the simulation demonstrate that the FHT process can practically improve the effect of hydraulic fracturing and significantly increase the well production capacity. The stimulation mechanisms of the FHT include thermal stress cracking, organic matter structure changing, and aqueous phase removal. Furthermore, the special characteristics of the supercritical water such as the strong oxidation, can not be ignored, due to the FHT can assist the retained hydraulic fracturing fluid to reach the critical temperature and pressure of water and transform to the supercritical state. The FHT can not only alleviate the formation damage induced by the fracturing fluid, but also make good use of the retained fracturing fluid to enhance the permeability of a shale gas reservoir, which is an innovative method to dramatically enhance gas transport capacity in shale matrix.


Sign in / Sign up

Export Citation Format

Share Document