gas targets
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 36)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 130 (2) ◽  
pp. 217
Author(s):  
В.Е. Гусева ◽  
А.Н. Нечай ◽  
А.А. Перекалов ◽  
Н.Н. Салащенко ◽  
Н.И. Чхало

The article considers the results of studies of the emission spectra of CHF3, CCl2F2, SF6 upon excitation by pulsed laser radiation. We used Nd:YAG laser, λ = 1064 nm, τ = 5 ns, and Epulse = 0.8 J. The spectral range of 3-20 nm was studied. We used capillary and supersonic conical nozzles with dcrit = 145 μm, 2α = 12o, L = 5 mm, and dcrit = 450 μm, 2α = 11o, L = 5 mm to form an atomic cluster beam. The emission spectra for various gas targets were obtained, the obtained spectra were deciphered, and the ions emitting in this spectral range were determined. We observed that with increasing particle concentration in the zone of laser spark, the radiation intensity increases. In this case, the intensity of ion lines with high degrees of ionization increases faster.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tianyi Sun ◽  
Ilissa B. Ocko ◽  
Elizabeth Sturcken ◽  
Steven P. Hamburg

AbstractNet zero greenhouse gas targets have become a central element for climate action. However, most company and government pledges focus on the year that net zero is reached, with limited awareness of how critical the emissions pathway is in determining the climate outcome in both the near- and long-term. Here we show that different pathways of carbon dioxide and methane—the most prominent long-lived and short-lived greenhouse gases, respectively—can lead to nearly 0.4 °C of warming difference in midcentury and potential overshoot of the 2 °C target, even if they technically reach global net zero greenhouse gas emissions in 2050. While all paths achieve the Paris Agreement temperature goals in the long-term, there is still a 0.2 °C difference by end-of-century. We find that early action to reduce both emissions of carbon dioxide and methane simultaneously leads to the best climate outcomes over all timescales. We therefore recommend that companies and countries supplement net zero targets with a two-basket set of interim milestones to ensure that early action is taken for both carbon dioxide and methane. A one-basket approach, such as the standard format for Nationally Determined Contributions, is not sufficient because it can lead to a delay in methane mitigation.


2021 ◽  
Author(s):  
Anton Nikolaevich Kiselev ◽  
Il’ya Sergeevich Degtyaryov ◽  
Yurij Mikhaylovich Andronov

Abstract Synopsis. The paper describes approaches used when creating a comprehensive strategy for the development of low-permeable gas deposits of the Turonian age. Unlike to common techniques based on the experience of the previous development, the authors propose to optimize each of the constituent components of the development design, taking into account their contribution to the overall designing cycle. The efficient development strategy and technology will allow expanding the resource base of hydrocarbons at the expense of gas targets of the Turonian deposits, substantiating the efficiency of potentially promising areas of unallocated areas of the deposits.


Geophysics ◽  
2021 ◽  
pp. 1-54
Author(s):  
Jie Liu ◽  
Jianzhong Zhang

Gravity inversion, as a static potential field inversion, has inherent ambiguity with low vertical resolution. In order to reduce the nonuniqueness of inversion, it is necessary to impose the apriori constraints derived by other geophysical inversion, drilling or geological modeling. Based on the a priori normalized gradients derived from seismic imaging or reference models, a structure-guided gravity inversion method with a few known point constraints is developed for mapping density with multiple layers. The cubic B-spline interpolation is used to parameterize the forward modeling calculation of the gravity response to smooth density fields. A recently proposed summative gradient is used to maximize the structural similarity between the a priori and inverted models. We first demonstrate the methodology, followed by a synthetic fault model example to confirm its validity. Monte Carlo tests and uncertainty tests further illustrate the stability and practicality of the method. This method is easy to implement, and consequently produces an interpretable density model with geological consistency. Finally, we apply this method to the density modeling of the Chezhen Depression in the Bohai Bay Basin. Our work determines the distribution of deep Lower Paleozoic carbonate rocks and Archean buried hills with high-density characteristics. Our results are consistent with the existing formation mechanism of the “upper source-lower reservoir” type oil-gas targets.


2021 ◽  
Vol 118 (13) ◽  
pp. 131110
Author(s):  
A. Grigoriadis ◽  
G. Andrianaki ◽  
M. Tatarakis ◽  
E. P. Benis ◽  
N. A. Papadogiannis
Keyword(s):  
X Ray ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ganjaboy S. Boltaev ◽  
Mazhar Iqbal ◽  
Naveed A. Abbasi ◽  
Vyacheslav V. Kim ◽  
Rashid A. Ganeev ◽  
...  

AbstractEnhanced high repetition rate coherent extreme ultraviolet (XUV) harmonics represent efficient probe of electron dynamics in atoms, molecules and solids. In this work, we used orthogonally-polarized two-color laser field to generate strong even and odd high order harmonics from molecular gas targets. The dynamics of odd and even harmonics from O2, and N2 gases were investigated by employing single- and two-color laser fields using the fundamental radiation and second harmonic of 1030 nm, 37 fs, 50 kHz pulses. The relative efficiencies of harmonics were analyzed as a function of the thickness of the barium borate crystal used for second harmonic generation. Defocusing-assisted phase matching conditions were achieved in N2 gas for different groups of XUV harmonics.


Radiocarbon ◽  
2021 ◽  
Vol 63 (2) ◽  
pp. 499-511
Author(s):  
Mihály Molnár ◽  
Marianna Mészáros ◽  
Róbert Janovics ◽  
István Major ◽  
Katalin Hubay ◽  
...  

ABSTRACTA coupled accelerator mass spectrometer–gas interface system has been successfully operating at the Hertelendi Laboratory of Environmental Studies, Debrecen, Hungary, since 2013. Over the last 6 years more than 500 gas targets were measured below 100 µg carbon content for carbon isotopic composition. The system was tested with blanks, OxII, IAEA-C1, IAEA-C2, and IAEA-C7 standards. The performance of our instrumentation shows good agreement with other published gas-interface system data and also shows a quite good agreement with the nominal value of international standard samples. There is a measurable but quite small memory effect after modern samples, but this does not significantly affect the final results. Typical ion currents at the low energy side were between 10–15 µA with a 5% CO2 in He mixing ratio. The relative errors average ±6% for samples greater than or equal to 10 µgC sample with mean count rates of 300 counts per microgram C for OxII. The blank is comparable with other systems, which is 0.0050 ± 0.0018 F14C or 34,000–47,000 yr BP, which allows for the routine measurement of both of small environmental and archeological samples.


2021 ◽  
Author(s):  
Ilissa Ocko ◽  
Tianyi Sun ◽  
Steven Hamburg

<p>The concept of net zero emissions is now a central element of government and business commitments to addressing climate change, with more net zero policies and pledges being rolled out on an almost daily basis. However, of major concern is the limited awareness of how critical the emissions reduction pathway is in achieving desired climate outcomes. The focus of the climate policy community remains on the target date rather than the path to get there, and net zero "by 2050" is considered by many as the required policy characteristic in achieving temperature targets. Ultimately, the rate and magnitude of future warming relies on the amount, type, and timing of greenhouse gas emissions. Based on different combinations of these factors, it is both possible to succeed or fail in achieving temperature goals even if the global community reaches net zero by 2050. For similar reasons, it is also possible to miss the net zero by 2050 target and still succeed in meeting temperature goals. Therefore, it is important to clarify the role of the decarbonization pathway taken and offer recommendations to ensure that net zero pathways succeed in achieving global climate goals. In this analysis, we show how different net zero paths can lead to a range of temperature outcomes, and how we can strengthen the probability of meeting globally agreed upon climate goals by establishing complementary near-term targets. Key components of ensuring success in achieving temperature targets include incorporating a carbon dioxide budget and acting early to reduce methane emissions. Not only do these actions make achieving our goals more likely, but they also make the path forward more affordable and less dependent on technology not yet available at scale. Overall, improved understanding of the role of the path to net zero would create greater flexibility in effectively fulfilling commitments; open opportunities for trading across groups of greenhouse gases with no loss in climate benefits; and make it easier and cheaper to accomplish corporate and government goals.</p>


Sign in / Sign up

Export Citation Format

Share Document