Novel Pattern Recognition Using Bootstrap-Based Discriminant Locality-Preserving Projection and Its Application to Fault Diagnosis

2019 ◽  
Vol 58 (38) ◽  
pp. 17906-17917 ◽  
Author(s):  
Yan-Lin He ◽  
Xiaona Yan ◽  
Qun-Xiong Zhu
2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Fen Wei ◽  
Gang Wang ◽  
Bingyin Ren ◽  
Jianghua Ge ◽  
Yaping Wang

In order to sufficiently capture the useful fault-related information available in the multiple vibration sensors used in rotation machinery, while concurrently avoiding the introduction of the limitation of dimensionality, a new fault diagnosis method for rotation machinery based on supervised second-order tensor locality preserving projection (SSTLPP) and weighted k-nearest neighbor classifier (WKNNC) with an assembled matrix distance metric (AMDM) is presented. Second-order tensor representation of multisensor fused conditional features is employed to replace the prevailing vector description of features from a single sensor. Then, an SSTLPP algorithm under AMDM (SSTLPP-AMDM) is presented to realize dimensional reduction of original high-dimensional feature tensor. Compared with classical second-order tensor locality preserving projection (STLPP), the SSTLPP-AMDM algorithm not only considers both local neighbor information and class label information but also replaces the existing Frobenius distance measure with AMDM for construction of the similarity weighting matrix. Finally, the obtained low-dimensional feature tensor is input into WKNNC with AMDM to implement the fault diagnosis of the rotation machinery. A fault diagnosis experiment is performed for a gearbox which demonstrates that the second-order tensor formed multisensor fused fault data has good results for multisensor fusion fault diagnosis and the formulated fault diagnosis method can effectively improve diagnostic accuracy.


Author(s):  
Yan-Lin He ◽  
Yang Zhao ◽  
Xiao Hu ◽  
Xiao-Na Yan ◽  
Qun-Xiong Zhu ◽  
...  

2003 ◽  
Vol 36 (5) ◽  
pp. 861-866 ◽  
Author(s):  
A. Marciniak ◽  
C.D. Bocăială ◽  
R. Louro ◽  
J. Sa da Costa ◽  
J. Korbicz

Author(s):  
Canyi Du ◽  
Rui Zhong ◽  
Yishen Zhuo ◽  
Xinyu Zhang ◽  
Feifei Yu ◽  
...  

Abstract Traditional engine fault diagnosis methods usually need to extract the features manually before classifying them by the pattern recognition method, which makes it difficult to solve the end-to-end fault diagnosis problem. In recent years, deep learning has been applied in different fields, bringing considerable convenience to technological change, and its application in the automotive field also has many applications, such as image recognition, language processing, and assisted driving. In this paper, a one-dimensional convolutional neural network (1D-CNN) in deep learning is used to process vibration signals to achieve fault diagnosis and classification. By collecting the vibration signal data of different engine working conditions, the collected data are organized into several sets of data in a working cycle, which are divided into a training sample set and a test sample set. Then, a one-dimensional convolutional neural network model is built in Python to allow the feature filter (convolution kernel) to learn the data from the training set and these convolution checks process the input data of the test set. Convolution and pooling extract features to output to a new space, which is characterized by learning features directly from the original vibration signals and completing fault diagnosis. The experimental results show that the pattern recognition method based on a one-dimensional convolutional neural network can be effectively applied to engine fault diagnosis and has higher diagnostic accuracy than traditional methods.


Sign in / Sign up

Export Citation Format

Share Document