control valve
Recently Published Documents


TOTAL DOCUMENTS

1659
(FIVE YEARS 348)

H-INDEX

27
(FIVE YEARS 5)

Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 39
Author(s):  
Hideyuki Taguchi ◽  
Kenya Harada ◽  
Hiroaki Kobayashi ◽  
Motoyuki Hongoh ◽  
Daisaku Masaki ◽  
...  

This study investigated a pre-cooled turbojet engine for a Mach 5 class hypersonic transport aircraft. The engine was demonstrated under takeoff and Mach 2 flight conditions, and a Mach 5 propulsion wind tunnel test is planned. The engine is composed of a pre-cooler, a core engine, and an afterburner. The engine was tested under simulated Mach 4 conditions using an air supply facility. High-temperature air under high pressure was supplied to the engine components through an airflow control valve and an orifice flow meter, and liquid hydrogen was supplied to the pre-cooler and the core engine. The results confirmed that the starting sequence of the engine components was effective under simulated Mach 4 conditions using liquid hydrogen fuel. The pre-cooling effect caused no damage to the rotating parts of the core engine in the experiment.


2022 ◽  
Vol 14 (2) ◽  
pp. 870
Author(s):  
Mohammad Alsarayreh ◽  
Omar Mohamed ◽  
Mustafa Matar

Accurate simulations of gas turbines’ dynamic performance are essential for improvements in their practical performance and advancements in sustainable energy production. This paper presents models with extremely accurate simulations for a real dual-fuel gas turbine using two state-of-the-art techniques of neural networks: the dynamic neural network and deep neural network. The dynamic neural network has been realized via a nonlinear autoregressive network with exogenous inputs (NARX) artificial neural network (ANN), and the deep neural network has been based on a convolutional neural network (CNN). The outputs selected for simulations are: the output power, the exhausted temperature and the turbine speed or system frequency, whereas the inputs are the natural gas (NG) control valve, the pilot gas control valve and the compressor variables. The data-sets have been prepared in three essential formats for the training and validation of the networks: normalized data, standardized data and SI units’ data. Rigorous effort has been carried out for wide-range trials regarding tweaking the network structures and hyper-parameters, which leads to highly satisfactory results for both models (overall, the minimum recorded MSE in the training of the MISO NARX was 6.2626 × 10−9 and the maximum MSE that was recorded for the MISO CNN was 2.9210 × 10−4, for more than 15 h of GT operation). The results have shown a comparable satisfactory performance for both dynamic NARX ANN and the CNN with a slight superiority of NARX. It can be newly argued that the dynamic ANN is better than the deep learning ANN for the time-based performance simulation of gas turbines (GTs).


Author(s):  
Dazhou Geng ◽  
Qijuan Chen ◽  
Yang Zheng ◽  
Xuhui Yue ◽  
Donglin Yan

The stabilization of power take-off (PTO) is imperative especially under circumstances of fluctuating input wave energy. In this paper, a flow control valve is introduced to optimize the transient process of the hydraulic PTO, which can contribute to a quicker adjustment and a stronger stability. Under variations of input power and load torque in transient process, an open-loop control method and a closed-loop control method are proposed as the opening law of the above valve, and the hydraulic motor speed, the pressure at the accumulator inlet and the generated power are chosen as indicators to examine the regulation performance. Then, the synergic effect of the flow control valve and the accumulator in the transient process is discussed. The effectiveness of the two presented control methods on the fluctuation suppression is respectively tested and compared in both regular wave and irregular wave situations via simulation. To validate the practical effectiveness of the proposed methods, field experiments are conducted. The results demonstrate that the open-loop control can only improve the damping ability of the hydraulic PTO in the speed raising stage, while the closed-loop control can improve the stability both in the speed raising stage and in the load increasing stage.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 367
Author(s):  
Michele Tunzi ◽  
Dorte Skaarup Østergaard ◽  
Svend Svendsen

Automated hydronic balancing in space heating systems is crucial for the fourth-generation district heating transition. The current manual balancing requires labor- and time-consuming activities. This article presents the field results of an innovative electronic radiator thermostat tested on two Danish multi-family buildings. The prototypes had an additional return temperature sensor on each radiator and an algorithm was used to accurately control valve opening to ensure automated hydronic balancing. The results highlighted that the new thermostat performed as expected and helped secure the cooling of district heating temperatures —defined as the difference between supply and return temperature—4–12 °C higher during the test compared to results obtained in 2020, when the prototypes were replaced with state-of-the-art thermostats in the first building. The measurements from the other building illustrated how only two uncontrolled radiators out of 175 could contaminate the overall return temperature. The remote connection of the thermostats helped pinpoint the faults in the heating system, although the end-users were not experiencing any discomfort, and secure, after fixing the problems, a return temperature of 35 °C. Future designs may consider integrating a safety functionality to close the valve or limit the flow in case of damage or malfunction to avoid a few radiators compromising the low-temperature operation of an entire building before the cause of the problem has been identified.


2021 ◽  
Vol 9 (2) ◽  
pp. 268-282
Author(s):  
Moch. Faqih ◽  
Nu Rhahida Arini ◽  
Hendrik Elvian Gayuh Prasetya

A steam turbine is the most critical component in a thermal power plant. Due to its crucial function, it should be maintained to be able to operate without failure. This paper aims to develop an application that can be used to analyze the reliability and synchronization of vibrations in a single evaluation through the application. The application is helpful to decide the proper time the maintenance should be performed in order to provide a better maintenance strategy. In this paper, the application was used to make an ease in evaluating the reliability and vibration of a 670 MW power plant steam turbine. The reliability was analyzed by qualitative and quantitative methods. The vibration evaluation using Fast Fourier Transform (FFT) was done by diagnosing the failure symptoms from vibration spectrum. The analysis of synchronization of vibrations conducted by comparing the vibration frequency and the natural frequency of the system which can be calculated easily using the application. The algorithm program of both evaluations was built using GNU Octave software to make a friendly user interface. From the evaluation result, the most critical components of the steam turbine are coupling, labyrinth seals, bearing, diaphragm, turbine control valve, and turbine stop valve. The maintenance interval based on the expected reliability of 90% produces the highest reliability improvement. Based on the vibration analysis, there is no failure symptoms detected in the turbine bearings. Furthermore, the dominant frequencies of vibration are distant from the natural frequency. Therefore, the steam turbine condition is acceptable to operate.


2021 ◽  
Vol 54 (6) ◽  
pp. 865-870
Author(s):  
Deepak Bharadwaj ◽  
Durga Dutt

Pneumatics suction is being used in the food factory for picking and placing the ingredients of food. A clean environment inside the food factory is very much needed the maintain the quality of packaging food. The present work focuses on the low level of automation so that investment cost for processing the raw ingredient goes down. Two double-acting pneumatic cylinders, one pneumatic suction gripper, three pneumatic direction control valves, one screw compressor, one DC motor, two relays, a Push button, and a 24-volt power supply have been used the implement the system. A combination of pneumatic actuation and electrical actuation is used for controlling the motion of the system. A simple control ON/OFF system was used for the actuation. Pneumatic component drive with the help of compressed air via a direction control valve and motor direction control using the relay. By pressing the push button whole, the setup can be controlled in a very easier way and it is very user-friendly for the operator. Several testings have been done on the setup and an excellent result were obtained during execution.


2021 ◽  
Vol 6 (7) ◽  
pp. 160-163
Author(s):  
Haruna A. Ogweda ◽  
Joseph E. Okhaifoh

This paper presents the design and implementation of a remotely mounted Anti-surge Control Valve (ASCV) for a mixed refrigerant gas compressor deployed in an industrial plant. The traditional ASCV model which is usually self-mounted is plagued by component failures due to stress fatigue from excessive vibrations leading to unreliability of the system. A new system with a remote-mount actuation control system was developed, tested, installed and commissioned in place of the initial self-mount system. Test results showed that average percentage of trips caused by failure of the ASCV dropped from 70% with the initial set-up to 0% with the modified set-up. Hence, a lasting solution to the issue of component fatigue failure from vibrations has been resolved using the highly reliable developed remote-mount actuation control.


2021 ◽  
Vol 12 (1) ◽  
pp. 279
Author(s):  
Dong Li ◽  
Jie Hang ◽  
Yunhua Li ◽  
Sujun Dong

Fuel flowrate control system and fuel thermal management are very important for aeroengine and the overall aircraft, and it has been researched for several decades. This survey paper makes a comprehensive and systematic overview on the exiting fuel flowrate regulation methods, thermal load of fuel metering units, fuel-based thermal management, and the fuel tank’s thermal management topology network with drain and recirculation. This paper firstly reviews the mechanism, technical advantages, and technical challenges of the fuel metering unit with flowrate control valve and constant pressure difference valve compensator, flowrate control valve and variable displacement pump-based pressure difference compensator, and motor-based flowrate regulation. Then, the technical characteristics of above fuel flowrate control methods related to thermal management are discussed and compared. Meanwhile, the behaviors of recirculated fuel flow within single tank system and dual tank system are explored. Thirdly, the paper discusses the future directions of fuel flowrate control and thermal management. The survey is significant to the fuel flowrate control and fuel thermal management of the aircraft.


2021 ◽  
Vol 38 (4) ◽  
pp. 308-316
Author(s):  
Jae Yong Lee ◽  
Dong Wook Shim ◽  
Soo Kwang An ◽  
Eun Seok Kim ◽  
Byung Ryul Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document