Fungal β-Glycosidase Belonging to Subfamily 4 of Glycoside Hydrolase Family 30 with Transglycosylation Activity

Author(s):  
Ju-Hee Cha ◽  
Minsun Hong ◽  
Chang-Jun Cha
2021 ◽  
Vol 47 ◽  
pp. 107704
Author(s):  
Vladimír Puchart ◽  
Katarína Šuchová ◽  
Peter Biely

2013 ◽  
Vol 98 (9) ◽  
pp. 4021-4032 ◽  
Author(s):  
Haruko Sakurama ◽  
Shigenobu Kishino ◽  
Yoshie Uchibori ◽  
Yasunori Yonejima ◽  
Hisashi Ashida ◽  
...  

2021 ◽  
Author(s):  
Xinxin Li ◽  
Dimitrios Kouzounis ◽  
Mirjam A. Kabel ◽  
Ronald P. de Vries ◽  
Adiphol Dilokpimol

2018 ◽  
Vol 475 (9) ◽  
pp. 1533-1551 ◽  
Author(s):  
Franz J. St John ◽  
Diane Dietrich ◽  
Casey Crooks ◽  
Peter Balogun ◽  
Vesna de Serrano ◽  
...  

Glycoside hydrolase family 30 subfamily 8 (GH30-8) β-1,4-endoxylanases are known for their appendage-dependent function requiring recognition of an α-1,2-linked glucuronic acid (GlcA) common to glucuronoxylans for hydrolysis. Structural studies have indicated that the GlcA moiety of glucuronoxylans is coordinated through six hydrogen bonds and a salt bridge. These GlcA-dependent endoxylanases do not have significant activity on xylans that do not bear GlcA substitutions such as unsubstituted linear xylooligosaccharides or cereal bran arabinoxylans. In the present study, we present the structural and biochemical characteristics of xylanase 30A from Clostridium acetobutylicum (CaXyn30A) which was originally selected for study due to predicted structural differences within the GlcA coordination loops. Amino acid sequence comparisons indicated that this Gram-positive-derived GH30-8 more closely resembles Gram-negative derived forms of these endoxylanases: a hypothesis borne out in the developed crystallographic structure model of the CaXyn30A catalytic domain (CaXyn30A-CD). CaXyn30A-CD hydrolyzes xylans to linear and substituted oligoxylosides showing the greatest rate with the highly arabinofuranose (Araf)-substituted cereal arabinoxylans. CaXyn30A-CD hydrolyzes xylooligosaccharides larger than xylotriose and shows an increased relative rate of hydrolysis for xylooligosaccharides containing α-1,2-linked arabinofuranose substitutions. Biochemical analysis confirms that CaXyn30A benefits from five xylose-binding subsites which extend from the −3 subsite to the +2 subsite of the binding cleft. These studies indicate that CaXyn30A is a GlcA-independent endoxylanase that may have evolved for the preferential recognition of α-1,2-Araf substitutions on xylan chains.


2021 ◽  
Vol 8 ◽  
Author(s):  
Casey Crooks ◽  
Nathan J. Bechle ◽  
Franz J. St John

The Acetivibrioclariflavus (basonym: Clostridium clariflavum) glycoside hydrolase family 30 cellulosomal protein encoded by the Clocl_1795 gene was highly represented during growth on cellulosic substrates. In this report, the recombinantly expressed protein has been characterized and shown to be a non-reducing terminal (NRT)-specific xylobiohydrolase (AcXbh30A). Biochemical function, optimal biophysical parameters, and phylogeny were investigated. The findings indicate that AcXbh30A strictly cleaves xylobiose from the NRT up until an α-1,2-linked glucuronic acid (GA)-decorated xylose if the number of xyloses is even or otherwise a single xylose will remain resulting in a penultimate GA-substituted xylose. Unlike recently reported xylobiohydrolases, AcXbh30A has no other detectable hydrolysis products under our optimized reaction conditions. Sequence analysis indicates that AcXbh30A represents a new GH30 subfamily. This new xylobiohydrolase may be useful for commercial production of industrial quantities of xylobiose.


Sign in / Sign up

Export Citation Format

Share Document