transglycosylation activity
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 29)

H-INDEX

27
(FIVE YEARS 2)

Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Claudia Leoni ◽  
Caterina Manzari ◽  
Hai Tran ◽  
Peter N. Golyshin ◽  
Graziano Pesole ◽  
...  

Amylomaltases are prokaryotic 4-α-glucanotransferases of the GH77 family. Thanks to the ability to modify starch, they constitute a group of enzymes of great interest for biotechnological applications. In this work we report the identification, by means of a functional metagenomics screening of the crystallization waters of the saltern of Margherita di Savoia (Italy), of an amylomaltase gene from the halophilic archaeon Haloquadratum walsbyi, and its expression in Escherichia coli cells. Sequence analysis indicated that the gene has specific insertions yet unknown in homologous genes in prokaryotes, and present only in amylomaltase genes identified in the genomes of other H. walsbyi strains. The gene is not part of any operon involved in the metabolism of maltooligosaccharides or glycogen, as it has been found in bacteria, making it impossible currently to assign a precise role to the encoded enzyme. Sequence analysis of the H. walsbyi amylomaltase and 3D modelling showed a common structure with homologous enzymes characterized in mesophilic and thermophilic bacteria. The recombinant H. walsbyi enzyme showed starch transglycosylation activity over a wide range of NaCl concentrations, with maltotriose as the best acceptor substrate compared to other maltooligosaccharides. This is the first study of an amylomaltase from a halophilic microorganism.


2021 ◽  
Vol 11 (23) ◽  
pp. 11493
Author(s):  
Marlene Vuillemin ◽  
Jesper Holck ◽  
Martin Matwiejuk ◽  
Eduardo S. Moreno Prieto ◽  
Jan Muschiol ◽  
...  

The lacto-N-biosidase LnbB from Bifidobacterium bifidum JCM 1254 was engineered to improve its negligible transglycosylation efficiency with the purpose of enzymatically synthesizing lacto-N-tetraose (LNT; Gal-β1,3-GlcNAc-β1,3-Gal-β1,4-Glc) in one enzymatic step. LNT is a prebiotic human milk oligosaccharide in itself and constitutes the structural core of a range of more complex human milk oligosaccharides as well. Thirteen different LnbB variants were expressed and screened for transglycosylation activity by monitoring transglycosylation product formation using lacto-N-biose 1,2-oxazoline as donor substrate and lactose as acceptor substrate. LNT was the major reaction product, yet careful reaction analysis revealed the formation of three additional LNT isomers, which we identified to have a β1,2-linkage, a β1,6-linkage, and a 1,1-linkage, respectively, between lacto-N-biose (Gal-β1,3-GlcNAc) and lactose. Considering both maximal transglycosylation yield and regioselectivity as well as minimal product hydrolysis, the best variant was LnbB W394H, closely followed by W465H and Y419N. A high transglycosylation yield was also obtained with W394F, yet the substitution of W394 and W465 of the subsite −1 hydrophobic platform in the enzyme with His dramatically impaired the undesirable product hydrolysis as compared to substitution with Phe; the effect was most pronounced for W465. Using p-nitrophenyl-β-lacto-N-bioside as donor substrate manifested W394 as an important target position. The optimization of the substrate concentrations confirmed that high initial substrate concentration and high acceptor-to-donor ratio both favor transglycosylation.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1817
Author(s):  
Jiumn-Yih Wu ◽  
Hsiou-Yu Ding ◽  
Tzi-Yuan Wang ◽  
Yu-Li Tsai ◽  
Huei-Ju Ting ◽  
...  

Mangiferin is a natural antioxidant C-glucosidic xanthone originally isolated from the Mangifera indica (mango) plant. Mangiferin exhibits a wide range of pharmaceutical activities. However, mangiferin’s poor solubility limits its applications. To resolve this limitation of mangiferin, enzymatic glycosylation of mangiferin to produce more soluble mangiferin glucosides was evaluated. Herein, the recombinant maltogenic amylase (MA; E.C. 3.2.1.133) from a thermophile Parageobacillus galactosidasius DSM 18751T (PgMA) was cloned into Escherichia coli BL21 (DE3) via the expression plasmid pET-Duet-1. The recombinant PgMA was purified via Ni2+ affinity chromatography. To evaluate its transglycosylation activity, 17 molecules, including mangiferin (as sugar acceptors), belonging to triterpenoids, saponins, flavonoids, and polyphenol glycosides, were assayed with β-CD (as the sugar donor). The results showed that puerarin and mangiferin are suitable sugar acceptors in the transglycosylation reaction. The glycosylation products from mangiferin by PgMA were isolated using preparative high-performance liquid chromatography. Their chemical structures were glucosyl-α-(1→6)-mangiferin and maltosyl-α-(1→6)-mangiferin, determined by mass and nucleic magnetic resonance spectral analysis. The newly identified maltosyl-α-(1→6)-mangiferin showed 5500-fold higher aqueous solubility than that of mangiferin, and both mangiferin glucosides exhibited similar 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activities compared to mangiferin. PgMA is the first MA with glycosylation activity toward mangiferin, meaning mangiferin glucosides have potential future applications.


2021 ◽  
Author(s):  
Luyi Chen ◽  
Yi Liu ◽  
Yaoyao Zhou ◽  
Linjiang Zhu ◽  
Xiaolong Chen

Abstract The α-glucosidase (EC 3.2.1.20) Agl2 produced by Xanthomonas campestris shows high α-glucosyl transfer activity toward alcoholic and phenolic hydroxyl groups. Ethyl vanillin-α-glucoside, a precursor-aroma compound with improved water solubility and thermal stability, can be synthesized through the transglycosylation of ethyl vanillin by Agl2. However, its low ethyl vanillin-α-glucoside yield and ability to hydrolyze ethyl vanillin-α-glucoside limits for industrial applications. Rational design and site-directed mutagenesis were employed to generate three variants of X. campestris α-glucosidase: L145I, S272T and L145I/S272T, which displayed improved transglycosylation activity toward EV The ethyl vanillin-α-glucoside yield of L145I/S272T is the highest and is up to yield 52.41%. Besides, L145I/S272T also remarkably diminished the hydrolysis activity toward the transglycosylation product EVG compared to Agl2. Our rational design based the catalytic mechanism of the α-glucosidase reaction proved to be effective for producing mutants with improved the ratio of transglycosylation/hydrolysis of α-glucosidase, which provides an important theoretical basis for further research on the reaction mechanism of α-glucosidase.


2021 ◽  
Vol 7 (10) ◽  
pp. 816
Author(s):  
Karin Ernits ◽  
Christian Kjeldsen ◽  
Karina Persson ◽  
Eliis Grigor ◽  
Tiina Alamäe ◽  
...  

An early-diverged yeast, Blastobotrys (Arxula) adeninivorans (Ba), has biotechnological potential due to nutritional versatility, temperature tolerance, and production of technologically applicable enzymes. We have biochemically characterized from the Ba type strain (CBS 8244) the GH13-family maltase BaAG2 with efficient transglycosylation activity on maltose. In the current study, transglycosylation of sucrose was studied in detail. The chemical entities of sucrose-derived oligosaccharides were determined using nuclear magnetic resonance. Several potentially prebiotic oligosaccharides with α-1,1, α-1,3, α-1,4, and α-1,6 linkages were disclosed among the products. Trisaccharides isomelezitose, erlose, and theanderose, and disaccharides maltulose and trehalulose were dominant transglycosylation products. To date no structure for yeast maltase has been determined. Structures of the BaAG2 with acarbose and glucose in the active center were solved at 2.12 and 2.13 Å resolution, respectively. BaAG2 exhibited a catalytic domain with a (β/α)8-barrel fold and Asp216, Glu274, and Asp348 as the catalytic triad. The fairly wide active site cleft contained water channels mediating substrate hydrolysis. Next to the substrate-binding pocket an enlarged space for potential binding of transglycosylation acceptors was identified. The involvement of a Glu (Glu309) at subsite +2 and an Arg (Arg233) at subsite +3 in substrate binding was shown for the first time for α-glucosidases.


Author(s):  
Takanori Ichikawa ◽  
Mizuki Tanaka ◽  
Takayasu Watanabe ◽  
Sitong Zhan ◽  
Akira Watanabe ◽  
...  

Abstract We examined the role of the intracellular α-glucosidase gene malT, which is part of the maltose-utilizing cluster (MAL cluster) together with malR and malP, in amylolytic gene expression in Aspergillus oryzae. malT disruption severely affected fungal growth on medium containing maltose or starch. Furthermore, the transcription level of the α-amylase gene was significantly reduced by malT disruption. Given that the transcription factor AmyR responsible for amylolytic gene expression is activated by isomaltose converted from maltose incorporated into the cells, MalT may have transglycosylation activity that converts maltose to isomaltose. Indeed, transglycosylated products such as isomaltose/maltotriose and panose were generated from the substrate maltose by MalT purified from a malT-overexpressing strain. The results of this study, taken together, suggests that MalT plays a pivotal role in AmyR activation via its transglycosylation activity that converts maltose to the physiological inducer isomaltose.


2021 ◽  
Author(s):  
Mónica Robles-Arias ◽  
Mariano García-Garibay ◽  
Sergio Alatorre-Santamaría ◽  
Salvador R Tello-Solís ◽  
Francisco Guzmán-Rodriguez ◽  
...  

Abstract The effects of water activity (aw), pH, and temperature on transglycosylation activity of α-L-fucosidase from Thermotoga maritima in the synthesis of fucosylated oligosaccharides were evaluated using different water - organic cosolvent reaction systems. The optimum conditions of transglycosylation reaction were the pH range between 7 and 10, and temperature 90–95°C. The addition of organic cosolvent decreased α-L-fucosidase transglycosylation activity in the following order: acetone > dimethyl sulfoxide (DMSO) > acetonitrile (0.51 > 0.42 > 0.18 mM/h). However, the presence of DMSO and acetone enhanced enzyme-catalyzed transglycosylation over hydrolysis as demonstrated by the obtained transglycosylation/hydrolysis rate (rT/H) values of 1.21 and 1.43, respectively. The lowest rT/H was calculated for acetonitrile (0.59), though all cosolvents tested improved the transglycosylation rate in comparison to a control assay (0.39). Overall, the study allowed the production of fucosylated oligosaccharides in water-organic cosolvent reaction media using α-L-fucosidase from Thermotoga maritima as biocatalyst.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Bi ◽  
Loredana Scalschi ◽  
Namrata Jaiswal ◽  
Tesfaye Mengiste ◽  
Renana Fried ◽  
...  

AbstractCrh proteins catalyze crosslinking of chitin and glucan polymers in fungal cell walls. Here, we show that the BcCrh1 protein from the phytopathogenic fungus Botrytis cinerea acts as a cytoplasmic effector and elicitor of plant defense. BcCrh1 is localized in vacuoles and the endoplasmic reticulum during saprophytic growth. However, upon plant infection, the protein accumulates in infection cushions; it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids are sufficient for protein uptake and cell death induction, respectively. BcCrh1 mutant variants that are unable to dimerize lack transglycosylation activity, but are still able to induce plant cell death. Furthermore, Arabidopsis lines expressing the bccrh1 gene exhibit reduced sensitivity to B. cinerea, suggesting a potential use of the BcCrh1 protein in plant immunization against this necrotrophic pathogen.


2021 ◽  
Vol 22 (6) ◽  
pp. 3230
Author(s):  
Mireia Castejón-Vilatersana ◽  
Magda Faijes ◽  
Antoni Planas

The health benefits of human milk oligosaccharides (HMOs) make them attractive targets as supplements for infant formula milks. However, HMO synthesis is still challenging and only two HMOs have been marketed. Engineering glycoside hydrolases into transglycosylases may provide biocatalytic routes to the synthesis of complex oligosaccharides. Lacto-N-biosidase from Bifidobacterium bifidum (LnbB) is a GH20 enzyme present in the gut microbiota of breast-fed infants that hydrolyzes lacto-N-tetraose (LNT), the core structure of the most abundant type I HMOs. Here we report a mutational study in the donor subsites of the substrate binding cleft with the aim of reducing hydrolytic activity and conferring transglycosylation activity for the synthesis of LNT from p-nitrophenyl β-lacto-N-bioside and lactose. As compared with the wt enzyme with negligible transglycosylation activity, mutants with residual hydrolase activity within 0.05% to 1.6% of the wild-type enzyme result in transglycosylating enzymes with LNT yields in the range of 10-30%. Mutations of Trp394, located in subsite -1 next to the catalytic residues, have a large impact on the transglycosylation/hydrolysis ratio, with W394F being the best mutant as a biocatalyst producing LNT at 32% yield. It is the first reported transglycosylating LnbB enzyme variant, amenable to further engineering for practical enzymatic synthesis of LNT.


Sign in / Sign up

Export Citation Format

Share Document